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Abstract. In this paper we study the structure of criminal networks,
groups of related malicious infrastructures that work in concert to pro-
vide hosting for criminal activities. We develop a method to construct a
graph of relationships between malicious hosts and identify the under-
lying criminal networks, using historic assignments in the DNS. We also
develop methods to analyze these networks to identify general structural
trends and devise strategies for effective remediation through takedowns.
We then apply these graph construction and analysis algorithms to study
the general threat landscape, as well as four cases of sophisticated crimi-
nal networks. Our results indicate that in many cases, criminal networks
can be taken down by de-registering as few as five domain names, re-
moving critical communication links. In cases of sophisticated criminal
networks, we show that our analysis techniques can identify hosts that
are critical to the network’s functionality and estimate the impact of
performing network takedowns in remediating the threats. In one case,
disabling 20% of a criminal network’s hosts would reduce the overall
volume of successful DNS lookups to the criminal network by as much
as 70%. This measure can be interpreted as an estimate of the decrease
in the number of potential victims reaching the criminal network that
would be caused by such a takedown strategy.

1 Introduction

Many of today’s cyber-security threats make use of globally reachable network
hosts that support cyber-criminal activities. For example, drive-by downloads
need reliable hosting to infect the visitors of compromised sites. Pay-per install
providers [6] need available hosting to distribute malicious binaries. Botmasters
need a mechanism to command their bots, often relying on networks of command
and control servers to provide redundancy for their critical communication chan-
nel to the compromised machines.

To avoid single points of failure, the miscreants make heavy use of DNS to
provide agility to their network operations, thus preventing trivial blacklisting
and comprehensive remediation efforts from easily disabling their malicious net-
work resources. For example, to provide redundancy to their critical malicious
infrastructure, attackers often use numerous domain names that map to multiple



hosts. As the network infrastructure relocates to survive blacklists and other re-
mediation tools, old domains drift to new hosts and new domains are registered.
This agility leaves a trail of breadcrumbs in historic DNS assignments, allowing
us to build networks of related malicious hosting infrastructures and measure
the threat landscape more holistically.

In this paper, we study criminal networks, their infrastructure, and their
relationships that provide hosting for one or more types of threats. A criminal
network infrastructure is often comprised of bulletproof hosting providers (or
rogue networks [32]), auxiliary hosting providers and/or large swarms of com-
promised machines. In order to perform effective takedowns, we must understand
how criminal networks are structured.

In this study we aim to (1) unveil the key components of criminal network in-
frastructures used to carry out a variety of malicious activities (hosting phishing
sites, botnet command-and-control servers, sending spam emails, etc.), and (2)
analyze the discovered malicious network infrastructures to better understand
what actions could be taken to dismantle them completely or to inflict significant
damage to the adversaries’ criminal operations.

To this end, we adopt the following high-level process. First, we construct
a graph of known malicious infrastructure and use passive DNS data to link
related hosting providers. Then, we use community finding algorithms over this
graph to identify different criminal networks likely operated by separate groups
of adversaries. Finally, we study the characteristics of the criminal networks to
identify techniques that may be employed to enact effective takedowns.

Our study is separated into two parts: the first part describes criminal net-
work infrastructure at a high-level (Section 4), whereas the second part presents
four case studies of interesting criminal networks (Section 5). We identify a class
of criminal networks that, based on their graph structure, could be easily taken
down in general. In addition, we analyze a number of large criminal networks
that present interesting complex structures. In instances where comprehensive
takedowns are difficult due to the complexity of the network, we pinpoint the
critical infrastructure that should be the focal point of a takedown effort to
maximize the damage done to the criminal network.

Our paper makes the following contributions:

Criminal network construction We provide a lightweight methodology to orga-
nize and find relationships between malicious infrastructure by leveraging his-
toric information related to their use of DNS. Using community finding algo-
rithms, we identify distinct criminal networks in the form of graphs in a scalable
way.

Network structure analysis We analyze the structure of the criminal networks
using two simple graph measures: the graph density and the eigenvector central-
ity of its vertices. The graph density characterizes graphs to identify common
structures seen in real-world criminal infrastructure. The eigenvector centrality
is used to identify the critical vertices in a criminal network. Both the graph
density and eigenvector centrality assist us in making an informed decision on



the most effective takedown strategies that fit the properties and structure of
each criminal network.

Takedown analysis We perform an in-depth analysis of four case studies using the
graph measures to determine the effectiveness of different takedown strategies
on sophisticated criminal networks. We quantify the amount of damage that
would be caused by these takedowns by estimating the potential loss in victims.
This loss is estimated by measuring the decrease in the volume of successful
client lookups to domains related to the target criminal network caused by de-
registering domain names or blocking IP addresses. This provides a quantitative
basis to determine the most effective takedown strategy for a given criminal
network.

2 Related Work

Prior work has focused on identifying autonomous systems (AS) known to host
a disproportionate amount of malicious activity [32, 28, 33]. The idea of network
cleanliness [9] has been explored as a potential indicator for future sources of ma-
liciousness based on the assumption that malicious infrastructures tend to group
together. We show that, in general, most criminal networks span across multiple
autonomous systems, which makes knowing the worst ASs a moot point with
respect to performing a comprehensive takedown. Disconnecting an AS from the
Internet is not an easy task, and it often does not prevent malicious hosting in the
long-term [24]. Focusing on high-level network structures, such as autonomous
systems, does not provide sufficient knowledge to perform comprehensive take-
downs. In contrast, we focus on identifying the web of smaller-sized networks
that work together to provide reliable malicious hosting. Criminal networks that
span multiple ASs can be disabled or heavily damaged since we identify not only
the malicious networks, but their relationships with others.

On the other end of the spectrum, analysis can be done on individual do-
mains and IP addresses. For example, prior work has studied the infrastructure
used to support Rogue AV campaigns [11], fast-flux service networks [17], online
scam infrastructure [18], command and control (C&C) networks [7], C&C migra-
tion [1], drop-zone infrastructure [15], and pay-per install infrastructure [6]. We
consider a campaign to be a collection of domain names and IP addresses that
serve a single malicious purpose and are associated with the same threat type,
e.g., botnet C&C, drop-zones, etc. These studies provide invaluable insight into
the low-level structure of campaigns, but this information also does not suggest
how to perform takedowns effectively. The complex structure of criminal net-
works makes understanding the relationships of the hosting networks essential
with regards to takedowns.

Graph-based infrastructure work either represents flows between networks
or simply uses the graph abstraction as a way of linking related information.
Nagaraja et. al. [25] used game theory and network analysis to suggest effective
attacks and defenses against networks and network connectivity. BotGrep [26]



identifies botnet communities using random walks to detect dense community
structures. Intuitively, peers in a botnet would communicate with patterns dis-
tinct from the less structured global Internet. Leontiadis et. al. [19] examined
flows from redirections to study the infrastructure used to support illegitimate
online prescription drug stores. These approaches all make a simplifying assump-
tion, and treat network structure as simple messaging networks: i.e., two vertices
communicating through a connected path in the graph. Christin et. al. [8] built a
graph where vertices are domains, bank accounts, and phone numbers and edges
are drawn when they appear together in a fraud campaign. This link analysis
does not follow the typical communication network example, but still yields fruit-
ful results by providing a concrete structure to group related data. Our graph
building methodology follows the latter approach in spirit, but also makes use of
community finding and network analysis to identify interesting features in the
discovered criminal networks.

3 Goals and Methodology

Our main objective is to identify the components of network infrastructures
used to carry out a variety of criminal activities – such as hosting spam- and
phishing-related sites, deploying botnet command-and-control servers, sending
spam emails, etc. – and to analyze these malicious network infrastructures to
better understand how they are organized and what level of effort would be
necessary to take them down. Towards this end, we perform these steps:

1. Enumerate hosts that participate in malicious activities, and find network
relationships between them.

2. Analyze the structure of these network relationships to identify indepen-
dent communities of hosts that constitute distinct criminal networks likely
controlled by separate groups of adversaries.

3. Investigate the criminal network landscape to identify broad commonalities
between classes of criminal networks with respect to remediation strategies.

4. Pinpoint the critical infrastructure within a given criminal network that
should be targeted during coordinated takedown efforts to increase the like-
lihood of success, or to maximize the damage to the adversary.

To bootstrap the process of enumerating hosts involved in malicious activi-
ties and find their relationships, we leverage a large passive DNS database [35],
which stores historic records of domain name to IP mappings as observed from
live network traffic, and a variety of private and public sources of known mali-
cious domains and IPs (Section 3.1). We build an undirected graph where vertices
correspond to malicious infrastructure and edges denote a historic relationship
between two vertices based on passive DNS evidence. Finally, we apply an analy-
sis based on community finding algorithms to identify distinct criminal networks,
and we compute the eigenvector-centrality of nodes within a criminal network to
assess their importance and qualitatively estimate how much potential damage
their takedown may cause to the entire criminal network (Section 3.3).



3.1 Data Sources

To enumerate hosts involved in malicious network activities, we leverage a va-
riety of private and public feeds of domain names and IPs known to have been
used for malicious purposes. Since we aim to provide a general picture of criminal
networks that may involve different types of criminal activities, we use several
sources of information, such as URLs embedded in spam emails, network traces
from malware dynamic analysis, lists of known C&C servers, IP blacklists, etc.
For example, given a spam URL, we extract the related domain name and use a
large passive DNS database to enumerate the set of IP addresses that were re-
cently resolved from this spam-related domain name. Our passive DNS database
is constructed from 16 months worth of DNS resolutions collected at a major
North American ISP spanning seven different geographical locations and serving
several million users.

Our spam feed [16] includes URLs extracted from spam emails captured by a
large spam trap. The malware-related data sources are from eleven public black-
lists [10, 20, 13, 14, 21, 31, 22, 34, 30, 3, 29] and one commercial malware dynamic
analysis feed. The source of information related to C&C servers is an internal
company feed comprising domain names and IPs related to known C&C network
infrastructures.

To find the network relationships between the enumerated hosts, we leverage
two functions that can be defined over passive DNS data:

– Related historic IPs (RHIP): given a domain name or set of domain names
d, RHIP(d) returns the set of routable IP addresses that d has resolved to
at some point in the past.

– Related historic domains (RHDN): given an IP address or a set of IP ad-
dresses ip, RHDN(ip) returns the set of domain names that have resolved to
ip at some point in their history.

Essentially, we consider two hosts to be related if they can be linked via the
RHIP and RHDN functions.

After constructing the criminal network graphs, we leverage a commercial
threat categorization and attribution process to identify specific criminal oper-
ators and malware families that are known to be affiliated with the identified
malicious network infrastructures.

3.2 Constructing Criminal Network Graphs

In this section, we describe the procedure we use to build our criminal network
graphs, which we represent using undirected weighted graphs.

An undirected graph G is defined by its sets of vertices V and edges E.
Edges are bi-directional and are assigned a weight between [0, 1] that expresses
the “strength” of the relationship between its endpoints. A graph is complete
if all pairs of vertices are adjacent, and is connected if for all pairs of vertices
vi, vj ∈ V there exists a sequence of adjacent vertices connecting vi and vj . A
disconnected graph is made up of multiple components, or subgraphs of G. If a



component contains only one vertex, it is called an isolated component [36]. A
vertex represents a collection of 256 IP-addresses (a Class C network or /24)
and an edge connecting two vertices denotes a historic relationship, according
to passive DNS data, between two IPs in the respective Class C networks.

C&C

Spam

RHIP RHDN Compose

Malware

Community

1 2 3 4 5

Fig. 1: Overview of process to generate criminal network graphs. Data sources
are polled (1), domains are converted to IPs (2) and edges are drawn based on
overlaps found in the passive DNS database (3). Different source type graphs are
composed (4). Graphs are built and composed every day and community finding
is performed to identify criminal networks (5).

A high level overview of the criminal network graph generation procedure is
shown in Figure 1. Every day, the data sources are polled for new blacklisted
network data (1). This network data comes in the form of known malicious IP
addresses and domain names. Attackers are known to quickly migrate to new
networks after takedowns [24], so in a deployed implementation we keep up with
this drift by constantly adding newly discovered malicious network data. All
malicious domain names are converted into IP addresses by looking up their
related historic IP addresses (RHIP), and all of the IP addresses are binned into
the Class C networks (2) that they belond to. Next, we look up each IP addresses’
related historic domain names (RHDN) and edges are drawn between vertices
when the intersection of their RHDN’s is non-empty (3). If network hosts are
found to be related to whitelisted domains, these IPs are removed to reduce the
occurrences of non-malicious infrastructure in our graphs. Graphs from different
sources are composed and edges are redrawn (4). Edges are weighted using the
Jaccard index J , a ratio of the cardinalities of the intersection and union of two
sets. Given two vertices vi and vj that are adjacent, their edge weight is defined
by Equation 1,

J(vi, vj) =
|D(vi) ∩D(vj)|
|D(vi) ∪D(vj)|

(1)

where D(v) is the set of domains that historically point to IP addresses in
vertex v. Graphs from multiple days are composed and community finding is
used to identify criminal networks (5).

Whitelisting Our whitelist contains the top 10,000 Alexa domain names and
domains of several popular content delivery and advertisement networks. The



whitelisting process works by examining the domain name sets generated by
RHDN for every IP. Consider an IP ip, if its RHDN(ip) contains a domain that
is whitelisted, or is a sub-domain of a whitelisted domain, we remove ip from our
graph. For example, consider the domain name doubleclick.net which is used
by Google’s doubleclick advertising service. The top 10,000 Alexa does not con-
tain doubleclick.net (only doubleclick.com), however, the IP that doubleclick.net
resolves to, 216.73.93.8, has an RHDN set that contains doubleclick.com, which
is whitelisted and the IP address 216.73.93.8 would be removed from our graph.
If an attacker is aware of our whitelisting strategy there is little room for abuse.
For an attacker to abuse our whitelisting strategy to evade our analysis, they
would have to commandeer and point a whitelisted domain to their malicious
infrastructure.

It is important to stress that we are seeking relationships between IPs as
seen from the DNS, not from malware samples. For example, a given malware
sample may intersperse its connection to its C&C server with spurious lookups to
benign domains, these networks will not be connected unless there is an explicit
relationship according to our passive DNS database.

Community Finding False positives can still be introduced, despite our whitelist-
ing, which may cause edges to be drawn unnecessarily. For example, if a network
host sinkholes multiple domains belonging to distinct criminal networks, our
graph building process will erroneously show them as related. To address this
problem in general, we leverage graph structure to identify the criminal networks
using community finding algorithms.

The community finding process can automatically infer these scenarios based
on the graph structure and correctly partition the underlying criminal networks.
To perform community finding, we use the Louvain method [4], an algorithm
known to scale well to graphs with hundreds of millions of vertices and bil-
lions of edges. We apply the community finding algorithm to each non-isolated
component in our graph at step 5 of Figure 1.

3.3 Graph Analysis

Definitions: Understanding whether a graph is dense or sparse is a useful mea-
sure for summarizing graph structure. The density of a graph G, δ, is defined by
δ = |E|/

(|V |
2

)
and is the ratio of edges present in G to the number of possible

edges in G. A graph with a density of 1 is complete and with a density of 0 has no
edges. In our graphs, vertices are not of uniform importance, so quantifying the
centrality of a vertex in a graph is a useful way of estimating the node’s relative
importance in the graph based on its structure. The eigenvector centrality (EC)
is a measure of a vertex’s centrality which often reflects its importance based on
the graph’s structure. Using EC, a vertex is considered important if it has many
neighbors, a few important neighbors, or both. More formally, the eigenvector
centrality xi for a vertex i in a graph G is defined in Equation 2,



xi = κ−11

∑
j

Aijxj (2)

where A is the adjacency matrix of G, κ1 is its largest eigenvalue, 0 ≤ xi ≤ 1,
and xj are i’s neighbors eigenvector centralities [27]. The EC is a useful metric
for identifying “important” vertices in a graph independent of the underlying
data being represented. We will use this to help determine a takedown strategy
that attempts to maximize damage to a criminal network. Removing important
vertices targets portions of the criminal network that are used both frequently
and collectively to host the operations of multiple criminals.

Consider a social network, such as Facebook, where a vertex represents an
individual and an edge drawn between two vertices represents a friendship. Ver-
tices in this graph with high eigenvector centrality will be individuals with a large
number of friends, a few friends that have many friends, or both. Similarly, high
eigenvector centrality vertices in a criminal network graph are hosting providers
that provide redundancy for many smaller hosting providers, a few larger hosting
providers, or both. As an example, consider that a botnet operator could host
her C&C server using a benign hosting provider, but when the C&C server is
discovered, the diligent hosting provider will likely respond to abuse complaints
and disable it. Thus, our operator uses a less scrupulous hosting provider to pro-
vide redundancy in the event of such a remediation attempt. One can imagine
this behavior occurring in several criminals, and aggregated over time one would
expect some kind of structure to emerge where the least scrupulous and most
diligent hosting providers have the highest and lowest eigenvector centralities,
respectively. This intuition suggests that targeting more structurally important
vertices can help make takedown attempts more damaging to criminal networks.

There is an important caveat in the social network analogy that concerns
connectivity. In a social network, removing social ties can sever friendships be-
tween individuals, but the same is not true in criminal networks. This is because
nothing flows between connections in a criminal network in a literal sense, like
friendship flows between mutual friendships. The assumption that does hold true
is that someone with high social standing is likely to befriend additional high sta-
tus individuals or several individuals en masse. Considering criminal networks,
this means high eigenvector centrality networks are more likely to continue and
expand their malicious activity into the future and therefore are where remedi-
ation efforts ought to be focused.

Simulating Takedowns Our ultimate goal is to determine how to perform effec-
tive and damaging takedowns of criminal networks. We first provide a bird’s eye
view of the criminal network landscape to search for recurring graph structures
that are susceptible to takedowns. In other words, graph structures that lend
themselves to comprehensive takedowns that require marginal effort. Next, we
focus on specific cases of large criminal networks where we identify critical in-
frastructure to target during remediation to maximize the damage inflicted on
a criminal network when a comprehensive takedown is prohibitively expensive.



Using the graph analysis measures we defined above, we identify potential
weak points in a criminal network graph that may be susceptible to takedowns,
and analyze how successful our takedowns would be by estimating the potential
loss in future successful lookups. Not all criminal networks have the same struc-
ture, and some structures may be more or less amenable to different types of
takedowns, such as taking down specific subnetworks or remediating groups of
domain names affiliated with the network.

We consider the two main methods for takedown: network-level takedown,
accomplished by raiding a hosting facility, or a domain-level takedown, accom-
plished by “revoking” domain names associated with the criminal network in co-
operation with the domain names registrars. The goal of these takedown methods
is to prevent potential victims from reaching key parts of the criminal network
infrastructure.

To determine the order in which to take down infrastructure for a given
criminal network G, we define the criticality of the vertices v ∈ G by:

crit(v) = vip × vd × vec (3)

where vip is the number of malicious IPs within vertex v, vd is the number
of malicious domains that have pointed into v, and vec is the vertex’s eigen-
vector centrality. The first two measures quantify the vertex’s historic career
of maliciousness and the eigenvector centrality quantifies the vertex’s structural
importance to the criminal network.

Input: MD: a set of known malicious domains
Output: Returns, for each criminal network, the suggested order of networks to

eliminate for performing a comprehensive takedown
MIP ← RHIP(MD)
MNet ← bin IPs in MIP into Class C networks
MNet ← ∀v∈MNet remove v if RHDN(MNet)∩ whitelist 6= ∅
E ← {}
for v1, v2 ∈MNet do

if RHDN(v1) ∩ RHDN(v2) 6= ∅ then
E ← E ∪ (v1, v2)

end
end
G← (MNet, E)
CriminalNetworks← CommunityF inding(G)
takedowns ← {}
for subgraph ∈ CriminalNetworks do

takedowns ← takedowns ∪ sort descending by arg maxv∈subgraph crit(v)
end
return takedowns

Algorithm 1: High-level overview of how criminal networks are discovered
and nodes are prioritized for takedown.

In an operational environment, takedowns would be performed based on the
output of Algorithm 1. The system takes sets of known malicious domains and



outputs, for each identified criminal network, the nodes that should be targeted
during a comprehensive takedown to maximize damage to the hosting infrastruc-
ture. The infrastructure used by the malicious domains are identified using the
passive DNS database call to RHIP. These IPs are pruned using our whitelisting
procedure and are grouped into their parent Class C (/24) networks. For each
pair of networks, we identify domain name overlaps using the RHDN function.
This identifies networks that share the burden of providing malicious infras-
tucture and if a takedown were desired, must be taken down simultaneously
to perform a comprehensive takedown. The graph is partitioned using the de-
scribed community finding algorithm to identify distinct criminal networks and
by analyzing the graph structure we can determine which networks provide es-
sential redundant hosting for criminal activity. Because malicious activity is so
heavily distributed, targeting the worst individual hosting facility is insufficient.
To perform comprehensive takedowns, one must consider the criminal network
structure holistically, which motivates the use of the graph-based representa-
tion. It allows us to focus on the entire structure such that we can maximize the
damage against the network.

For every criminal network in our case study, we order the vertices by their
criticality using Equation 3 and estimate the benefit in taking down the criminal
network using either network-level or domain-level takedowns. For each type of
takedown, we present a cumulative distribution function (CDF) showing the
proportion of domain names or networks removed from the criminal network
against the total amount of potential victim lookups with respect to the entire
criminal network. The intuition is that revoking domain names and blocking
IP addresses that received a large volume of queries in the recent past has the
potential of preventing a large fraction of the victim population from reaching
the criminal network hosts in the future. If we successfully targeted critical
infrastructure, the CDF will be superlinear denoting that eliminating key pieces
of infrastructure severely impacts the lookups destined for the criminal network.
If a strategy is unsuccessful, we should see linear/sublinear CDFs.

4 Threat Landscape

In this section, we present general observations about the graphs we built for our
study. We discuss source type distributions and describe a case of a frequently
occurring graph structure that could be easily taken down.

4.1 General Graph Statistics

Starting in May 2011, we began building graphs every day for a period of 8
months. Our final graph contains 64,030 vertices and 1,957,614 edges and repre-
sents 127,597 malicious IPs and 3,018,077 malicious domain names. The graph
is disconnected, where 54% of the vertices are isolated components. These are
threats that do not distribute their infrastructure using the DNS. As we men-
tioned earlier, many of these isolated components may also be due to false posi-
tives from non-distributed hosting not present in our whitelist. Figure 2a shows



a breakdown of threat types between isolated and non-isolated components.
Most isolated vertices hosted spam sites or malware-related threats, and very
few hosted any others. Our malware and spam sources are fundamentally noisy
which, could explain the large difference between the isolated and non-isolated
type distributions.

Since we are building our graphs with historical data, it is possible that
originally bad IPs are remediated and used later on for legitimate purposes. If
the new domains that resolve to the remediated IP space are whitelisted they
will be removed from the graph, but if they are not they would still be flagged as
malicious. To address this problem in future work, a shorter window of analysis
can be used to reduce the likelihood of this behavior becoming commonplace.

4.2 Criminal Network Landscape

The remaining vertices form 4,504 distinct communities where each represents
a criminal network. Of the 4,504 criminal networks identified, approximately
87% of them formed complete subgraphs. In addition to being complete, Fig-
ure 2b shows that most criminal networks contain few domains and second-level
domains (2LD) and even fewer networks. In over half of the complete cases, a
criminal network could be disabled by de-registering as few as five domain names
or three 2LDs. This strongly suggests that a large number of small criminal net-
works can be easily remediated.

(a) Type breakdown-isolated vs. non-
isolated. The y-axis represents the threat
type seen in each vertex of our graph.
Most host a single threat type (e.g., spam
or malware), but many host multiple
threat types, even reusing the same IP
address (e.g., malware,spam, etc.).

(b) Log-scale distribution of the crimi-
nal network size, domains and 2LDs in
complete criminal networks.

Fig. 2: Threat landscape breakdown



5 Case Studies

We describe four case studies of large and structurally interesting criminal net-
works that represent the different classes of infrastructure we saw in the wild.
The case studies were not chosen automatically, but were chosen based on the
visualizations of the output of our community finding algorithm described in
Section 3.2. We used simple graph metrics to select the case student criminal
networks by focusing on large graphs (e.g. many vertices) that had high and
low graph densities. In all AS graph visualizations, vertex color encodes the au-
tonomous system number while the vertex size encodes the number of known
malicious domains that historically pointed into the network. Furthermore, the
edges are drawn when one or more domains are shared between two vertices, un-
less otherwise specified. In all eigenvector centrality (EC) graph visualizations,
vertex shade encodes the eigenvector centrality (darker is more important), and
vertex size and edges are defined as they are for AS graphs, unless otherwise
specified. The authors suggest that visualizations of the case studies be viewed
in a PDF viewer if a high-resolution color printer is not available to get a clear
view of the infrastructure.

For each criminal network presented, we provide a breakdown of the identified
criminal operators using them as well as a breakdown of the sources polled to
generate the vertices in the criminal network. Prior to investigating each case
study, we were unaware of the underlying criminal affiliations. We will see that
EC is a key factor we can use to dynamically obtain a metric for the critical
vertices in the criminal network. As we noted in Section 3.3, EC is analogous
to PageRank [5] for undirected graphs and provides a similar measure of the
importance of a vertex in a graph.

5.1 Rustock Criminal Network

Rustock criminal network was among the largest criminal networks we identi-
fied with 3,177 vertices and 7,128 edges. Rustock [23] was a large spam-oriented
botnet generally used for fraudulent pharmaceutical sales. We describe the ma-
licious hosting infrastructure used by Rustock and that was still in use during
our study by other criminals.

Rustock criminal network’s most distinguishing features can be seen in Fig-
ure 3a. It is sparse (graph density of 0.001) and the graph contains a dense core
of networks that contain a large proportion of the domain names compared to
the remaining vertices, shown by their larger size. In addition to the number of
malicious domains they host, these vertices are also considered important based
on their eigenvector centrality, shown in Figure 3b.

The top ASs by eigenvector centrality in the Rustock criminal network are
shown in Table 1. This criminal network employs a mixture of bulletproof host-
ing, cloud-based hosting and compromised home user machines as part of its
infrastructure. The inclusion of GoDaddy is due to parking sites the malicious
domains pointed to before and/or after their malicious lifetime. CloudFlare is
currently running sinkholes for Kelihos and most likely for other botnets as well,



(a) Rustock criminal network AS graph (b) Rustock criminal network EC graph

(c) MojoHost benign hosting network
AS graph

(d) MojoHost benign hosting network
EC graph

Fig. 3: Case Study Visualizations [2]



(a) Masterhost criminal network AS graph (b) Masterhost criminal network EC graph

(c) Botnet criminal network
AS graph

(d) Botnet criminal network
Inverted EC graph

Fig. 4: Case Study Visualizations cont.



(a) Rustock criminal
network

(b) MojoHost benign
hosting network

(c) Masterhost crimi-
nal network

(d) Botnet criminal
network

Fig. 5: Network-level takedown CDFs

AS# AS Description # of Domains
33626 Oversee 14,262
22489 Castle Access Inc. 124,321
15146 Cable Bahamas 55,465
13335 CloudFlare Inc. 21,770
16509 Amazon 6,772
32421 Black Lotus Communications 9,070
32592 Hunt Brothers 14,373
21844 The Planet 12,511
26496 GoDaddy 45,654
4635 Confluence Network Inc. 4,635

Table 1: Top 10 ASes in Rustock criminal network by eigenvector centrality

which would explain its high importance in this criminal network. Castle Access
Inc. and Cable Bahamas are known to be used for domain parking monetization,
which would explain their presence.

Rustock was taken down in March of 2011 (Operation b107), however the
Rustock criminal network has facilitated other criminal operations until this day.
This shows that single botnet takedown approaches can solve only the short term
problem of a threat (i.e., spamming activity facilitated by Rustock botnet). In
the case of Rustock criminal network, we saw that Internet abuse continued to
use the same criminal infrastructure, as the Rustock botnet used to use, long
after the botnet was taken off-line. During the 8 months of our experiment, we
observed 4,381 new malicious domain names per day that began to use this
criminal network.

5.2 MojoHost Benign Hosting Network

The MojoHost benign hosting network (Figure 3c) is an example of a benign
hosting provider being abused by Internet miscreants for criminal infrastructure.
We want to make the distinction clear that we are not saying MojoHost is com-
plicit in criminal activity, but rather, malicious threats abuse MojoHost to build
their criminal network. It is a smaller community of 255 vertices that has several
distinct campaigns, the “orbiting” sub-communities, using it as infrastructure.
The most structurally significant vertices are colored by their eigenvector cen-
trality (Figure 3d). These 12 black vertices all belong to a single AS (AS27589)
which provides redundancy for the malicious campaigns.



We identified seven distinct operators using the MojoHost benign hosting
network for their malicious infrastructure, primarily to act as C&C servers. There
were three distinct Zeus kit campaigns, two Blackhole exploit kit campaigns, and
three unidentified malware family campaigns running C&C servers. In addition
to C&C servers, the community was also home to three data exfiltration drop
sites used by a mixture of Zeus instances. The Blackhole exploit kits facilitated
drive-by downloads that infected victims with a Delf malware family instance,
which is used to perform the second-stage of a two-stage binary drop. Most
domains were registered through dynamic DNS providers which are commonly
used in Blackhole exploit kit instances.

Despite the fact that the MojoHost community is benign, it presents an
interesting hierarchical structure that would intuitively be fairly resistant against
AS-level take downs. While the main support structure for the campaigns exists
in a single AS, the orbiting communities are spread across 58 ASs in total. If a
criminal network contained several layers in this hierarchical fashion, it would
be difficult to cripple it quickly due to the redundancy. Maintaining this level
of structure may prove to be difficult in scale, which may explain why criminal
networks seen in practice are much less organized (Sections 5.1 and 5.4).

5.3 Botnet Criminal Network

This criminal network is a large botnet that provides fast flux services across
1,226 vertices, most of which belong to consumer dynamic IP address space.
The graph is almost complete with a graph density of 0.956 (see Figure 4c). It
is in the botnet operator’s best interest to keep this structure as it maximizes
the redundancy of the vertices using DNS agility. Since the graph is nearly
complete, it is reasonable to assume that most of the vertices are of about equal
importance. The eigenvector centrality, however, reveals interesting underlying
structure by highlighting the vertices considered less important to the overall
criminal network. In Figure 4d, we see the eigenvector centrality graph where the
vertex shading is inverted (darker is less important in this case), which highlights
32 vertices within the botnet’s sub-structure that are used for other purposes.
Specifically, these vertices with lower than normal EC appears to be C&C servers
and data exfiltration drop sites for Zeus v2 (a.k.a. Zeus Group B) and Blackhole
kit generated malware for a single operator. In this case it is important to note
that the only way to truly disable the network is to target the central nodes.
Eliminating lower centrality nodes would quickly disable the smaller campaigns
contained within, but would not cause damage to the larger criminal network,
which is the focus of this paper. Furthermore, significant portion of the domain
names in this botnet are related with FakeAV/RogeAV type of threats. One of
the main differences of the FakeAV threats facilitated by this criminal network
is that they are primarily delivered by search engine optimization poisoning
techniques.

Botnet criminal networks are likely to present themselves as dense or com-
plete graphs with a relatively uniform eigenvector centrality distribution due to
the fundamental nature of how they are operated by criminals. Furthermore, by



looking for vertices that are considered less important by centrality measures,
we may identify underlying substructures that differ in function.

(a) Rustock criminal
network

(b) MojoHost benign
hosting network

(c) Masterhost crimi-
nal network

(d) Botnet criminal
network

Fig. 6: Domain-level takedown CDFs

5.4 Masterhost Criminal Network

At 3,725 vertices and 11,519 edges, the Masterhost criminal network is the largest
criminal network we identified during our study (Figure 4a). Much like the Ru-
stock criminal network, the Masterhost criminal network is very sparse (graph
density of 0.002), but the densely malicious networks are missing from the center.
In this criminal network, dense vertices are not considered structurally impor-
tant as shown by Figure 4b. This means that the malicious domains contained
within these dense structures are not heavily replicated throughout the criminal
network, making these good candidates for AS-level takedowns.

AS# AS Description # of Domains
25532 Masterhost 12,281
21788 Network Operations Center Inc. 3,692
3561 Savvis 3,285
7303 Telecom Argentina 2,830
32613 iWeb Technologies 2,684
21740 eNom, Inc. 2,292
25847 ServInt 2,275
16509 Amazon Inc. 2,254
7788 Magma Communications Ltd. 2,225
6939 Hurricane Electric, Inc. 2,201

Table 2: Top 10 ASes in Masterhost criminal network by number of malicious
domains

The top 10 ASes by number of hosted malicious domains in the Masterhost
criminal network are shown in Table 2. Notice the number of domains per AS
is substantially smaller than it was for the Rustock criminal network due to the
lack of centralized malicious hosting. The biggest AS, with the respect of the
domain names that facilitate resolutions for, is the “Masterhost”. Masterhost is
a very well known bulletproof network that has been identified by the security



community since 2007 and it is highly related with the Russian Business Network
organization [12]. In the 8 months of our experiments, we observed a median of
1,065 new malicious domain names every day that began to use the Masterhost
criminal network.

5.5 Simulating Takedowns

Using Equation 3, we identify critical vertices in the case study networks and
simulate takedowns by producing the network-level and domain-level takedown
CDFs in Figure 5 and Figure 6, respectively. These CDFs show the proportion
of networks or domain names removed from the criminal network against the
loss in the total amount of potential victim lookups that were made to the
entire criminal network. Successful takedowns will manifest as superlinear CDFs,
denoting that we can eliminate many potential victims by selectively removing
few critical vertices in the criminal network. The aggregate DNS lookup volume
to the malicious infrastructure proxies the potential loss in victim population;
intuitively, infrastructure that is queried frequently is likely to cause the greatest
problems to the attacker if it is taken down. In the two largest cases, the Rustock
criminal network and Masterhost criminal network, we see the network-level
takedowns are very effective (Figure 5a/5c). In the Rustock criminal network,
removing only 20% of the criminal network infrastructure decreases to total
number of lookups by 70%. In the Masterhost criminal network, we can decrease
total lookups by 40% by focusing our takedown efforts on the worst 20% of the
networks. Recall from Figures 3b and 4b that the Rustock criminal network
had a dense core of dedicated malicious hosting, while the Masterhost criminal
network did not. This would explain the difference in takedown performance
between the two criminal networks. Figures 6a and 6c show that domain-level
takedowns for these two criminal networks are ineffective, based on the sublinear
and linear CDFs. Intuitively, this makes sense as the graphs are very sparse.
A single domain name is unlikely to substantially damage the infrastructure
because the domain names are less distributed.

Figures 5b and 6b illustrate the difficulty in taking down a well structured
network seen in the MojoHost benign hosting network. Since the underlying
network infrastructure is benign, the miscreants abusing MojoHost must take
great care in distributing their malicious activities, which makes takedowns more
difficult. This also suggests that creating hierarchical criminal networks resilient
against takedowns is possible, but we did not find these structures in the wild.

For the Botnet criminal network, both network-level (Figure 5d) and domain-
level (Figure 6d) takedowns were successful; eliminating 40% of the networks or
domains associated with the botnet caused an 80% and 70% decrease in total
lookups, respectively. Since Botnet criminal network has a much higher graph
density than the other case studies, it makes sense that the domain-level take-
down would be effective. However, understanding the success of the network-level
takedown requires an understanding of the type of threats the network facilitates
the hosting infrastructure for. Most of the malicious hosting that uses the Bot-
net criminal network are for C&C servers, which need to be highly available.



This availability requirement causes the dense structure, which lowers the dis-
criminatory function of the EC metric as most nodes will be considered highly
important. Our selection process compensates for this by targeting networks
densely populated with malicious domain names and IPs.

6 Conclusion

In this paper, we proposed a graph-based method to representing criminal net-
work infrastructures and unveiling their key components. Furthermore, we pro-
posed an approach to analyze the graph properties of malicious network infras-
tructures and better understand what actions could be taken to dismantle them
completely or to inflict significant damage to the adversaries’ criminal opera-
tions. We showed that in many smaller criminal networks, their network graph
structure and domain name distribution make complete takedowns possible, by
revoking the domains associated with the criminal network with the help of
the domain registrars. In more complex cases, we provided three key metrics
that can identify critical components of a criminal network, and quantified the
effectiveness of our suggested takedown measures.
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