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ABSTRACT

We describe a novel, practical and simple technique to maks D
queries more resistant to poisoning attacks: mix the uppdr a
lower case spelling of the domain name in the query. Fouslio
almost all DNS authority servers preserve the mixed casedenc
ing of the query in answer messages. Attackers hoping tmpois
a DNS cache must therefore guess the mixed-case encodihg of t
query, in addition to all other fields required in a DNS poisgn
attack. This increases the difficulty of the attack.

We describe and measure the additional protections reétige
this technique. Our analysis includes a basic model of DNS po
soning, measurement of the benefits that come from caséigens
query encoding, implementation of the system for recurBids
servers, and large-scale real-world experimental evialuaSince
the benefits of our technique can be significant, we have tamet
ously made this DNS encoding system a proposed IETF standard
Our approach is practical enough that, just weeks afterisidad
sure, it is being implemented by numerous DNS vendors.

General Terms

DNS, DNS poisoning, DNS transaction security, DNS forgexy r
sistance, protocol security, network security, DNS seéguri
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DNS poisoning attacks present a persistent, ongoing thoeat
server operations. While there are a variety of DNS poisptéch-
nigues, those directed at large cache servers often usetéws: s
(a) they force the recursive server to perform a lookup; dusah t
(b) spoof misleading DNS answers, using the source addféiss o
authority server. A successful attacker can change a DNBecac
entry, and redirect all users of the victim DNS server to taaby
proxy locations. When done to obtain transactional infdaroma
(e.g., banking), this technique is called pharming (ordasgale
phishing) [27].

Numerous solutions have been proposed to prevent DNS poison
ing, e.g., whitelisting [14], cryptographic systems [3&hd many
client-based systems have been suggested. Solutionsinggthianges
to the DNS infrastructure, however, face larger hurdleseplaly-
ment. For example, DNSSEC [5] and DLV [34] use cryptography
to provide strong DNS messaging integrity. However, thgse a
proaches require significant changes to the world’s DN@s#tftic-
ture: the signing of zones, the creation of policies to martagse
keys, and the deployment of DNSSEC-aware clients and server

Other DNS security solutions contemplate even larger obmitw
the network infrastructure, e.g., the creation of DHT-lolasaming
or cooperative haming systems that replace DNS [24, 37]nkve
these systems prevent poisoning, they are more likely tosfitogh-
tion in new, developing network architectures, such as Raems,
compared to existing network systems. DNS is so widely used,
ployed in tens of millions of systems, and so central to eatigr
protocol, that one must expect it will survive the creatiémovel
replacement solutions.

The goal of our work is to devigeractical security solutions for
DNS that make resolvers more resistant to poisoning. Spabyfi
we desire the creation of DNS light-weight forgery-resiseatech-
nology that has several properties:

1. No Radical Changes. DNS improvements should ideally re-
quire no large-scale replacement or modification of exgstin
DNS infrastructure. (If large changes were needed, onealcoul



argue that zone owners should instead just deploy DNSSEC.) and addresses. DNS is a complex protocol with numerousaentr

. Protocol Sability. Improvements should require no alter-
ation of the DNS protocol, which would in turn require reim-
plementation of DNS server and client code. (Surveys have
shown there are tens of millions of DNS servers deployed
world-wide, many on embedded devices [8, 25]. Amending
them to handle a new protocol is likely cost-prohibitive.)

. Backward Compatible. Any improvements should be op-
tional, and not disrupt other technologies that rely ontegs
DNS standards.

We present a defense technique against poisoning thafiesatis
these requirements. We propose the mixed-case encodingnf q
and reply messages between recursive and authority servers
example, instead of querying farww.example.com |, recursive
DNS servers would instead query fawW.eXamPLe.cOM or
some other pattern of case variations.

Sincealmost all authority DNS servers preserve the case encod-
ing of DNS queries, bit-for-bit, as presented by the rewerserver,
only the recursive servers need to change how they format-que
tions.

The pattern of mixed-case encoding of domain names, un@ue t
each transaction between DNS initiators and respondersides
an additional means to track messages between serversli\Werca
encoding system “DNS-0x20" after the bit position used tomipa
ulate case.

The main contributions of this paper include:

e We propose DNS-0x20, a simple change to the formatting of
DNS queries. We have implemented DNS-0x20, and have
offered the technology as an IETF standards proposal [32].
At this writing, the proposal has progressed to working grou
status. As further proof that our scheme is practical, work-
able, and useful, numerous DNS vendors (at this writing) are
now incorporating DNS-0x20 encoding into their servers and
products—just weeks after the idea was first proposed.

We present an in-depth analysis of the cache poisoning at-
tack and the ID field vulnerability. We use an basic model of

DNS poisoning, but extend it to consider parameters (e.g.,
server diversity) commonly used in DNS operations. We

show that DNS-0x20 encoding increases message integrity
far more than authority and recursive diversification.

To show how DNS-0x20 encoding improves resolver secu-
rity, we study the number of additional bits available, lhse
on a large-scale DNS traffic trace. For short domains, of

course, the benefits are less. Nonetheless, since each ad-

ditional bit doubles the search space of the attacker, even
small improvements obtained through DNS-0x20 results in
a query stream that is exponentially harder to successfully
attack. While not offering complete security, our systeg si
nificantly raises the bar.

Section 2 presents a succinct overview of DNS, and essential
background on DNS poisoning. Readers already familiar vits
may skip to Section 3, where we offer a model of DNS poisoning.
Our encoding system is presented in Section 4, and is eealuat
Section 5.

2. BACKGROUND

A critically-important component of the Internet infrastture,

ling RFCs. We therefore focus on only those details reletant
DNS forgery attacks. Readers requiring a more general mwerv
may consult [31].

2.1 DNS Overview

In DNS, domain names are composed of labels, separated by pe-
riods, which correspond to namespaces in a hierarchicabtrac-
ture. Each domain is a node, and the bottom-up concatenaftion
nodes creates a fully qualified domain name. A zone is cabect
of such nodes, constituting a separate tree structuretiathone’s
start of authority, or SOA at the apex. The contents of t8®A(ei-
ther mappings of labels to hosts, or further downward de¢iegn
is available from “DNS authority servers”. In DNS nomenuta,
these authority servers are sometimes called the SOA.

There are two other DNS resolvers typically involved in pois
ing attacks: recursive resolvers, and (less frequently) stsolvers.

A recursive resolver is what one normally thinks of as a “DNS
server”. Such resolvers accept queries from users, uraaershe
zone hierarchy system, and properly implement the varialesr
and RFCs to obtain and cache answers.

DNS initiators on host machines are called stub resolvengy T
typically don't interact with the zone hierarchy, and witfeav ex-
ceptions, don't cache answers. Instead, they implemenigino
DNS logic to pose basic queries to recursive servers.

A short example illustrates how these three classes of DNS sy
tems interact. Assuming no intermediate caching, resglsirmlo-
main name likevww.example.com potentially requires numer-
ous steps:

e First, the stub resolver sends the query to the recursiveser
In our example, we assume no previous resolutions whatso-
ever remain cached.

Next, the recursive resolver consults with the root servers
which are the authority for the empty label (the dbt, ,
implicit at the end of all fully qualified domain names). In
this example, the root servers would indicate a downward
delegation of the ¢om.” zone to other authority servers.
(For example, the client might be told to visit the DNS server
ata.gtld-servers.net. , run by VeriSign, and further
be given the IP address of that DNS server as “glue” to avoid
additional lookups).

Next, the recursive server will consult with thedm. ” zone
authority servers, which again will indicate further down-
ward delegation to thexample.com.  zone. (For exam-
ple, instead of being given an answer, the client might be
told next to visitnsl.example.com. , or the appropriate
authority server for the zorf.

Next, the recursive server consults themple.com. zone,
which would reveal the host address record (amécord”)
for www.example.com.

Finally, the answer is returned to the stub resolver, andexhc
by the recursive resolver to assist in future resolutions.

Each one of these consultations involves the recursivevesso
expecting an answer from a remote authority server—eithén-a
dication of further delegation or a terminating RRset. A D%
soner could anticipate or induce this chain of resolutiand; &e-
fore the authority responds, inject false answers with fggbsource

LAt this writing, theNSfor theexample.com are the hosta and
b in the zonelana-servers.net ; however, we've simplified

the Domain Name System (DNS) [21, 22], maps between namesthis sample to presume an authoritynafl.example.com



addresses. This form of DNS poisoning is a packet race. The re part, DNS vendors defended against the Kaminsky-classkalta

cursive servers accept whichever answer arrives first+gpde the implementing port randomization to “grow the key space”. N
arriving message matches a few simple transactional emeints. vendors also changed their glue-handling policies to bettidate

or reject the roguélSupdate.
2.2 DNS Poisoning In the DNS attacker/defender cat-and-mouse game, DNS-opera

tors continually look for additional opportunities to ingpe trans-
action integrity, and attackers search for weaknessesptemen-
tations, and other methods to predict transaction tokens.

To better understand the transactional issues in DNS pioigon
we can reduce the complexity of DNS lookups into a simplified
model. Figure 1 shows a basic conceptual model of these three
DNS actors critical to a DNS poisoning attack. In Figure % th

stub resolver first queries a caching server (labéi@dn the dia- 3. BASIC DNS POISONING MODEL

gram). Since in our example, the recursive lacks a cachg fortr .
the query, it contacts the authority server (labes€lAin the dia- While others have shov_vn that D.NS stub resol_vers can pe sub-
verted [8], our concern is in protecting the recursive resoin its

gram). The answer (labelddl A in Figure 1) is returned to the ¢ ” ith th thorit To do thi fiestd t
recursive server, which caches and sends the answer toule st ransactions with the autnority servers. 10 do this, we 0
characterize the risk of poisoning to any server.

Note that we have omitted any reference to the zone hieeschi X . > N
y Many of the basic mechanical steps in DNS poisoning are well-

For purposes of our analysis, DNS has but a single messagingk to attack F | ticinati h .
format, whether used to ask or answer a query. The protocol fo nown 1o attackers. or éxamplé, anticipaling when a réirs
server will initiate a DNS query is straightforward. Attack can

mat for DNS messages includes a 16-bit ID field, and a query fiel . . S
holding a wire representation of the domain name. Figureotvsh |tera.t|vely obsgrve cache valu.es oyertlme (and '”'“M V\{hen
how the ID field is used to establish the uniqueness of each mes pf_e"_'ous'y valid cach_ed entries time out and are queriedngga
sage. Slmll|<’.il’|y, open recursive servers can bg forced to QO Iosker.g.., .[8].
A DNS poisoner’s task, in the simple case, is to guess thetl6-b iﬂ\ddkmon?lly,dsecqredtrlljl:ltsh set[\t/eri mlghtdbet ott;:'gaifd :dxam:
query ID field. Figure 1 shows a DNS poisoner offering several ookups for domains that the attacker sends to the atientipro-
tected networks (e.g., by interacting with mail servergwlls, or

(spoofed source) DNS answers to a recursive server (ireaicad logai b hich in t ve d . etiaith
the “craftediN A" answers in the diagram). If the attacker guesses t(r)‘ggslggsvivoenSS)erverS, whichiin turn resolve domains as

the ID field, and her packet arrives before the authority exesv ! . .
Without loss of generality, we use the scenario where an at-

answer, the recursive server will accept and cache her imadic ) e . ; .
answer P tacker identifies and queries open recursive (OR) serveithoW
Clearly, DNS poisoners are most effective when they canggues a cachec_i re_cord, FECUrSIVe Servers nee_d tp start “ps”‘*a”?'
the ID field. Early versions of DNS servers deterministigati- tive queries in order to locate the authoritative servessnéied in
cremented the ID field (until OpenBSD developer Theo de Raadt Section 2, port|o.ns of the iterative SOA discovery may behgdc
(e.g., the authority server for the TLD may be cached). FEgur

suggested they be randomized). In [19, 16], Klein demotestra - _ ) i
that if the ID field is not securely randomized, it can be dttalc shows all of the various stages of this iterative processjming
' no caching takes place.

successfully after a few interactions with the server. . / - . .

Because there are only 65,536 possible ID field values, quevi The X-axis of F!gure 2 |nd|c§tes time. The perloq betweepsste
work has noted the use of birthday attacks, and techniqueg-to ts and t‘? in Fhe diagram cqnstltqtes thﬂlulnerable Wme\.N for a
ploit weak random number generation [15, 16, 17, 18, 19, 283, DNS poisoning attack. During thi&t period, thg (_)R waits for an

answer from the SOA. Attackers can send malicious answeheto

also [37]. : -
Accordingly, some DNS implementers have sought additional OR, and repe_at t_he process until they guess the appropidieeld,
or the authority finally responds.

sources of entropy to protect server messaging. D.J. Benn€l] . .
first suggested using the UDP source port fields, to showiadelt F![ggjrtethz sTtOWE (|r: dter*]nsely pa_cked arrow_sr)hnu d“.“erous pgckets
correspondence between queries and answers. In this apprea sent by the attacker 1o Ihe recursive server. The diagramssao

{ Progression that finally matches the ID field. Each congt#ta

cursive DNS servers would send a query, using a random 16-bit ", | fth ired 1D field and port val In oud
source port, and (conceptually) listen over some 65K opekets singlé guess ot the require , I€l0 and port vajues. In 0 eho
we also assume the answer’s TTL (or caching period) is suath th

for the appropriate reply. Not all source ports might be uged . . ) o
example, one might want to avoid well known pots1024 typi- if the attapk falls,_the attacke_r must_walt a lengthy pgrltbdlme
before trying again. (The poisoner is free to try again, airse,

cally used by other protocols) [12], and of course pools aksts ) )
could be used instead. But regardless of the implementzBibis but must wait TTL seconds—assumed to be a very long time.)

servers that use both the ID field and source port kave®° to

~ 232 possible combinations that an attacker must guess (depend-Definition 1. Wesay a DNSserver isforgery resistanivhere TT'L >>

ing on how the server handles reserved ports). At, and the chance of an attack being successful within At timeis
Recently, Dan Kaminsky announced a technique to repige low.

records by performing a series of nonce queries [13]. Intddk-

nique, the attacker merely induces a randéthquery, and spoofs We realize that terms such as “low” are unclear. After alk, de

answers with appropriatt A answersas well as anNSupdate. termined attackers may try an attack, regardless of thecehah
If the spoqfed attack fails to match the ID field, another @nd _ success. We clarify Definition 1 with the following assuropti
A? query is generated, and another round of spoofed answers is

sent. Eventually (withinrz 6 seconds on most networks), a match-
ing ID field is generated by the attacker, and the attackes tiee
authority section of the winning packet to evict the pregicached
NSrecord. This innovative approach reduces the attack tioma fr
weeks to seconds, allowing trivial control of DNS cache $inAn We pick 1 day forTi,.., a time that matches a very commonly
unprecedented multi-vendor response followed [30]. Ferttost used TTL period (86400 seconds). Further, one day is a reason

Assumption 1. If attack is not 10% likely to succeed within T',q2,
we deem the DNSserver isforgery resistant.



DNS Query;
ID=0xf526 A?

A? www.google.com

DNS Query;
ID=0xfe93 A?

A? www.google.com

DNS Answer;

I N A ID=0xfe93

IN A www.google.com
64.233.167.99 ...

{ Attacker ) Multiple crafted
. ’ IIIN AII

DNS Answer;
ID=0xfe93

DNS Answer;
ID=0xfe91

DNS Answer;
ID=0xfe92

IN A www.google.com
85.255.112.230 ...

IN A www.google.com
85.255.112.230 ...

IN A www.google.com
85.255.112.230 ...

Figure 1: Simplified model of DNS resolution, and poisoning.
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A? example.com .
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TLD Servers
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- Authority (SOA)

B Time
t1 t2 3 t4 t5 t6

Time window to poison
the OR cache

Figure 2: The attacker’s time window for a cache poisoning
attack on a DNS server during a iterative query.

period of time during which DNS logs could (should) be read by
an administrator, or the poisoning attack otherwise ndtlmeIDS
equipment.

We also note that, while 10% is clearly arbitrary, it proides
with a simple means of assessing DNS poison resistance.nfAbse
protocols such as DNSSEC, all DNS servers are vulnerabtante s
level of poisoning attack. The goal is to make the chance cfess
as low as possible.

For a particular context, depending on the value of the targe
one can adjust this value, and determine the resistance &f& D
deployment to poisoning. Note that the purpose of our wotk is
demonstrate an improvement in security. Using this assompt
lets us show theelative improvement in forgery resistance, as dis-
cussed in Section 5. Thus, a threshold of 10% is suitable dor o
purposes.

Clearly, the RTT (or delay between the OR and SOA), plays an
important role in the attacker’s chances of succesg\ilis large,
the poisoner can send more spoofed packets, one of whicht migh
match the required transactional ID field and port numberenE
in a Kaminsky-class attack (which is largely bandwidth tiedi),
the RTT determines the number of spoofed packets one can send
As noted in Section 2, many DNS vendors have also changed thei
glue handling policies so that rogiNéS updates are inspected and
re-validated. This means RTT remains one the most impovtaiit
ables for an attacker.

In practice, the RTT for DNS messaging varies, since reeersi
and authority DNS servers could be located anywhere. Fatiln
there are known techniques to measure the RTT between any tu-
ple of open recursive and authority servers. In [11], Gumimetd
al., described “King”, a measurement technique that ugesated
probes of open recursive servers. In general, King uses twaap
to measure the RTT between a recursive and authority sevver:
for anonce record thatis not in cache, and a second, duplicery
that gets answered from the recursive’s newly populatedecathe
time difference between the two is the RTT between the ramirs
and authority servers.

To observe variability in RTT, and suggest reasonable betord
estimating/At (which in turn determines the number of attack pack-
ets that can be sent) we implemented a larger, expande@nexsi
King. We followed several steps.



1. First, we obtained lists of open recursive servers, frah b B8 = Number of Source Ports (conceptualif).

the Measurement Factory’s study, [36], and by contactieg th ~ = Number of Ports excluded (often 1024, or depending on

authors of [8], who measured tens of millions of such servers kernel resources [12].)

We mapped each open recursive to an Autonomous System 6 = Number of authority servers and recursive IPs. Many au-

(AS), and randomly selected 5,000 resolvers from ripencc, thority clusters include multiple DNS servers with indegent pub-

arin, apnic and 500 from afrinic servers. We further verified lic IP addresses (to provide power and geographic divgrsigy

the hosts were still open recursive. recursive server normally RTT sorts the servers, and thenieg!

] ] the closest host. No RFC mandates this, however, and reeursi

2. We then crgated adomain, created an NS for the domain, andcan, also randomly select SOA serder Additionally, some recur-

made sure ithiSpropagated to the parent zone. sive servers are multi-homed, and could select any rousahlece
address for its queryf is the sum of all public facing addresses
used by the recursive and authority servers. In additiohéqbrt
and query ID, an attacker has to spoof the correct authasityce
address, and send this to the correct recursive address.

3. We next “primed” each open recursive to make sure they
had cached the root servers, TLDs, and required intermedi-
ate zones. (This avoided measuring the time needed by the
recursive to locate the authority server.)

4. We then used the following probe technique, for hundréds o Piaooess(iar) = 1
random labels within our domain. For each random label, suceess(s) = o (B— ) % 0
R;, we asked from several locations: In the common case of a server employing both ID and source

] port randomization, with 3 authority servers, this amouats
o lteratively asked the OR for the labél;. |.e., we made

sure it had not somehow cached the answer already. We 1 1
recorded the response timetas Psuccess(ist)y = 270 % (216 — 1024) # 3 ~ 1278

* Recursively asked the OR foR; again. |.e., we forced In sendingn packets, an attacker may succeed with:
it to consult the authority server. We knew from previ-

ous steps that the parent zone information and NS for n
our zone were already cached. We measured this time Pouccess(n) = ax(B—7)*0
astp

Other parameters of course affect the actual chance of ssicce
o Iteratively asked the OR for?; again. We noted the  Bandwidth and traffic loss are also critical variables wetee in-
time it took astc. cluded in our model. However, with the pervasive availapitif
e Calculates RTT; = tc — tp. As a sanity check, we  botnets, compromised machines, and proxies, we assume an at
also verified thatc —t5 ~ tc—t . l.e., the difference tacker would not be constrained. A more complex model would
between the recursive arahy iterative probe should introduce this as a separate constraint. Since networkureragnt
be the same. (The observed variance, due to inherent studies have generally observed that bandwidth corrgtatstively
Var|ab|l|ty in network de|ays’ is reported in Figure 4, toRTT [7], we omitted this parameter in our Slmpllfled model.
and discussed below.) Figure 3 shows the chance an attack will be successful dgains
variety of defenses, and illustrates the properties of implgied

5. After noting theRT'T;; for eachl ... n round of queries, we ~ model. The logscale x-axis depicts the number of attackgtack
calculated the average RTT between our SOA and the recur- Based on the RTT study (and assuming a window of 100ms, with

sive server. the attacker using a 100Mb/s connection), some 13,000 fsacae
be sent. The linear y-axis shows a rang# ahe combined IPs of
The distribution of RTT times, from the stub resolver’s pers- the authority and recursive servers. The logscale z-axigsihe
tive, appears in Figure 4(a). A CDF plot of these RTT times is probability of a successful attack. RFC 1912 recommendsadl sm
shown in Figure 4(b). There are several observations onme#e. number of authority DNS servers, and no more than[6]. While
First, these measurements generally fit the prevailing ensdf not a standard, this advice is general wisdom, and even éanige-
DNS operators that all DNS messages take anywhere 100 to 400prise zones (e.g., search engines, Fortune 500 compaaies)ust
milliseconds to complete, with a long tail taking much londee three or four public IPs for their authority server farms.
to drops, timeouts, and other problems (e.g., server &ilur The upper mesh drawn in Figure 3 shows the rate of success
Second, if the domain is cached, then the average queryéansw against a DNS server using just ID field randomization andexfix
response time is less than 100 millisecond. On the other iféma port. Unless significant numbers of additional authoritywees are
query was not cached it can take close to 400 millisecondthéor brought online (in excess of those normally used, and mae th
recursive server to present an answer back to the resolver. those recommended by RFC 1912), the chance of an attacker suc
Our small study helps us understand the dimension&iofFor cessfully poisoning a DNS server rises with the number afcatt

a given percentage of queries (say, the RTT for 90% of allupsk packets. In general, Figure 3 shows that IP diversity presid
between an OR and SOA tuple), and can estimate the RTT, andlinear increase in security, while port randomization jxieg an
from there determine the number of “guesses” an attackemede exponential improvement.

before the correct authority answer arrives. The lower mesh in Figure 3 shows a much better resistance to
forgery attempts. One might be tempted to think that pordoam
ization has solved DNS poisoning completely. While cleasg-

ful, [28, 29], port randomization can be overcome by detaadi
attackers able to send large amounts of traffic [20]. We dexsidi-

Definition 2. We can therefore state the chance of successfully
poisoning a DNS server, for a single packet:

We assume: tional f ity f | .
a = Number of Different DNS IDs (universall§'® or 65,535 lonal means of security for several reasons.
values) e Not every recursive DNS server can implement port random-
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Figure 3: Probability of DNS poisoning attack success, for fed
and randomized ports.

ization, since it poses unique engineering challengesriPot
tially, a server using source port randomization might have
select(2)

Domain name input

IBM.com

1 0x20 enconding

A <— Key(n-2), Key(n-1), Key(n) ...

l

B < 001011100 ..

Figure 5: A proposed algorithm for encoding DNS-0x20 bits
into queries. While other techniques are possible, this appach

is stateless, and allows for simple verification of the answe

with constant memory overhead.

over thousands of open sockets, opening and |etters constitutes a channel—one that can be used to im@NG

closing them as they are used. For embedded systems, im-security.

plementers may be left with expensive poll techniques. As

noted in [8], there are likely millions of recursive servars
embedded systems.

An example shows how this encoding can trivially correspmnd
a unique query. The following question names will be treated

equal by a responder (for purposes of cache matching), bubea

Some DNS servers are more important targets, (e.g., ISPtreated as unique by a DNS initiator.

DNS servers that could potentially yield millions of victin
Even if a DNS server used both the ID field and port random-
ization, it may still present a tempting target for persiste
ongoing, low-grade attacks.

We therefore need additional DNS protection measures, acglgn
to increase forgery resistance, but also to provide a dtyevéde-
fense options for a variety of platforms.

4. DNS-0X20 BIT ENCODING QUERIES

Domain Name Field Value
www.example.com 1111111111111
WWW.EXAMPLE.COM000000000000
WwW.eXaMpLe.CoM 0101010101010
wWw.EXAmMPIE.cOm 1010101010101

In the second column, we can indicate a numerical value that
represents the encoding, where lowercase == 1, and uppereas
0. The DNS initiator can use this encoding as an additionanse

As noted in Section 2, DNS labels are case insensitive, and in Of Verifying message integrity. . .
fact no DNS message assigns any meaning to case differehices o 10 efficiently encode a query, we propose a simple algorithm.

letters. Further, even if a zone configuration file contaiparicu-
lar case pattern, e. gV WW.EXAMPLE.CQdlieries using any case
pattern, e.g.www.example.com will be answered. Case for-
matting may be preserved in cache lines, in service of tradesn
however matching and resolution is entirely case insemsiti

It turns out that, with minor exceptions, all queries areiedp
from the initiator's packet, exactly into the response. dshsn the
available open source implementations that exhibit thistier, it
appears this behavior comes as a side-effect of efficiemjrano-
ming. Instead of copying the DNS query in memory, it is reterit
in place, just as it arrived over the wire. l.e., the autlyosigrvers
flip source port and IP fields, change flags, checksums, andtaaj
few parameters (e.g., authority and answer sectiongpace. Thus,
answer messages contain the query fialthe same case pattern
as originally offered by the DNS initiator.

This provides an opportunity to use the 0x20 bit of any ASCII
letter (in the range®x41 ... Ox5A andOx61 ... Ox7A,e.g.,
A ... Zanda ... z) in the question hame, to encode transac-
tional state information. The mixed pattern of upper ancdoease

Figure 5 illustrates the following steps:

1. As an input, a domain name input arrives: either an answer
from a server, or a query from a stub resolver. Figure 5 shows
the arrival of BM.com as a query string.

2. First, one transforms the query field into a canonical firm
e.g., all lowercase.

3. Second, one uses a chosen encryption scheme to encrypt
the canonical query, e.g., perhaps with AES [23], and a key
shared by all queries on the recursive server. This is illus-
trated as step A in Figure 5. This step could equivalently
use a small number of keys, one for a given time epoch.
(Key management is beyond the scope of this algorithm, but
briefly noted below.)

4. Since the resulting cipher block is longer than the o&bin
query in terms of bytes, bits are read in sequential fashion
from the cipher block. The query field, calleédff is read
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one byte at a time. Step B in Figure 5 shows the encoding of
all “0x20 capable” characters (i.&;Za-z .) In such a case,
one reads the next bjtfrom the ciphered block, and:

(a) ifthejth bitis 0, make the query character upper case
(i.e.,buff[i] |= 0x20 )

(b) if the jth bit is 1, make the query character lower case
(i.e.,buff[li] &= 0x20 )-

the final segment of Figure 5. This can be sent to an author-
ity server. Likewise, it can be used to verify the query field
returned by an authority server.

The mathematical operations used to change case- (0220
andVv = 0x20, above) suggested the name for the “DNS-0x20
encoding” scheme. l.e., upper and lower case charactexaee
bits apart in the ASCII table, and the 0x20th bit in a querydoees
a channel.

Since the encoding bits are derived from the domain name, the

system is stateless. That is, the DNS server does not haee to r

. This produces a 0x20-encoded domain name, as shown in -

5. ANALYSIS

Our proposed criteria in Section 1 requires that DNS-baséd a
poisoning measures result in improved security. DNS-0x20 e
coding improves the forgery resistance of DNS messagesionly
proportion to the number of upper or lower case charactes in
given query. For example, the domaiia.gov  has only2® addi-
tional combinations for the attacker to guess in a poisoattack,
while licensing.disney.com has2'®. In the pathological
case, queries for a ccTLD (country code top-level domairts, e
cx” ), would enjoy just two additional bits.

To see if DNS-0x20 improves the average case, we gathered
DNS traces (using passive DNS [35]) from a university nelwor
for several months, and examined the query fields extracteder
packets. We selected only packets that Aadbit flags enabled,
indicating they contained authority responses. In tote, traffic
amounted t&.6 million packets.

Figure 7(a) shows a correlation between the number of 0x20-
capable characters, and the overall length of the queryu@xg
the “.”  characters between labels). The vast majority of do-
mains were under 50 characters. For this grouping, over 2/3 o
the characters were 0x20 capable. Some clusters of longkr pa
ets occur at 100, 150 and about 200 character intervals, el h

“ ”

member that a query has been sent, and how it encoded the Oxzoaecidedly fewer Ox20-capable characters. An inspectiothese

capable characters. If one were to include such state in a DNS

server, it would likely be a DDoS target (at worst), or intnod
performance overheads in accessing main memory (at bebt). O
viously, other implementations are possible, and we sugbes
merely as an engineering efficiency, not as a requirement.

A secure encoding scheme, such as AES, can be used to mak

sure that attackers do not guess the encoding key. We do net co
sider issues of key management in our proposal. Howeverptee n
that, if a weak encoding system is used, attackers may citeith
an 0x20-encoding DNS server repeatedly, asking for labels i
zone the attacker controls, in an attempt to mount a plainaex
tack.

We see this attack as orthogonal. To prevent such attacka on a
0x20-enabled server, the key can be changed out frequbagd

on use or time. Thus, figure 5 shows one of several keys being

selected to encode a query. Keys can be retired after repeste
to minimize the risk of such attacks. Other implementatiars
also possible.

packets shows them to be DNSBL and sensor-related traffic. Fo
example, some mail servers encode state information inHgrad-
phanumeric labels, which are then checked against centuatl
DNSBLs.

Figure 7(b) also illustrates how domain depth relates tathe-

$er of available DNS-0x20 characters. In the far corner of Fi

ure 7(b), when one encounters domains witl34 labels (i.e. sep-
arated by nearly many periods), the number of usable DNS-x20
characters is small. Domains with such a depth correspone-to
verse IPv6 lookups, where only the ...F hex characters (or
dot-separated nibble bits) in IPv6 address can be casedlippe

For the most part, however, Figure 7(b) shows that with inseel
domain depth, the number of DNS-0x20 capable characters in-
creases slightly. This is confirmed in Figure 7(d) which canes
domain depth to alhon-0x20 characters. Figure 7(c) gives some
further insights into the variance of DNS-0x20 charactefis
plots the number of digits, in proportion to the length of tleenain
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Figure 6: (a) A comparison of various DNS anti-forgery technques shows the improvements due to DNS-0x20 encoding. (bjféct
of 0x20-Encoding on attack success probabilities, for vaous character counts. The 0x20 encoding particularly help®NS servers
that cannot implement port randomization schemes, becaus# platform resource limitations.

name. There is an obvious linear correlation, where someagom domization, the DNS server enjoys the growth curve foundihies
names are nearly entirely composed of digits. The diagramm th “b” and “c”. This plot also shows that excluding well knownrg
shows “stair cases” of clusters, with approximately 50, aftj 90 (e.g.,< 1024) isjust alinear reduction of an exponential term, does
digits.) This group corresponds to reverse DNS lookups,cdinelr not significantly affect outcomes. (1.6 > 1024).
customized DNSBL formats that use numerical encodings. The Using DNS-0x20, we can restate our simple model of DNS poi-
bulk of the observations made in Figure 7(c), however, apjgea  soning. The chance that th¢h packet would successfully poison a
the lower corner of the plot, below 50 characters in lenginc& DNS server, for the domaing, usually handled by the DNS server:
on average, domain names with 50 characters total have only
< 10 characters devoted to numbers, there are many characters et
available for DNS-0x20 encoding. Peumutativesuctn) = 1— H < _ 1 )

As a whole, Figure 7 shows there is variation in the number of 26 xux Ox (B —7y) — i
DNS-0x20 characters in DNS lookups. The Figure also ilaiss

=0

interesting types of lookups (e.g., reverse DNS) that tertpoor Figure 6(b) plots the resulting probability of success forad-
in DN'S-0x20 lookups. While such queries could be poisonesl, w tacker. Unlike the plot in Figure 3, we fix the number of adufial
suspect that attackers are more likely to target “high Vatiee authority servers to 3 (a conservatively high number ugtseken

mains, such as banks, social networking sites, and auciies. s  in enterprise networks; most networks tend to have just.tap
These domains are composed almost of entirely of 0x20-tapab average number of 0x20 characters handled by the seff«er,
characters, and would benefit even more from mixed-casedenco is represented on the y-axis. Figure 6(b) shows how DNS-0x20
ing. Figure 8(a)-(b) presents a CDF and histogram of the 0x20 has the most improvement for DNS servers using only the rardo

characters in all domain queries. It demonstrates thattyes% ized ID field and a single port. The chance of success dips with

of domain queries provide approximately 20 0x20-capabéeait more 0x20 characters in each query. (As noted, the average nu

ters; about 80% had at least 12 available 0x20 characters. ber of such characters was 12 in our sample study, with a media
To express the average security improvements of DNS-0x20, w of 16.) While not as dramatic a reduction as the use of ranzkeani

therefore define a convenience functigrwhich returns the num-  ports (which provide at least 14 bits on average), 0x20 eingae-

ber of 0x20 characters in a domain name. A DNS server that per- duces the attacker’s chance of success. Recall that abmartainc

forms both ID field and port-encoding will have, on averagjad- threshold, exponential growth becomes quite punishing=h st

of DNS-0x20 encoding doubles the work an attacker must parfo

ditional bits of entropy, o23>** possible values. As shown above, _ v e ng A
to achieve similar poisoning results.

for many types of queried, ~ 12. Note that each additional bit
doubles the number of combinations that an attacker mustsgue .

correctly. Exponential growth is punishing, particulafty larger 5.1 O_XZ_O problng _

exponents. Figure 6(a) shows the search space an attacker mu  Our criteria for a practical DNS-based protection systeso &-
guess against, for a simple encodingwh.com . The x-axisisthe ~ duires that it be widely deployable. To evaluate this, weckbd

total number of bits available to encode transaction idiesti The which authority servers supported and preserved DNS-0m20ce
y-axis indicates the number of possible combinations (erde- ings. Conceptually, this can be done by posing a mixed-casgy/q
nominator in any probability model for successful gueskitighe to authority servers regarding labels within their delegatone.
DNS initiator merely used the 1D field, and a single (non-ahle) For example, one might asis1.google.com  (one of the listed
source port, the additional benefits of 0x20-encoding apevalin authorities for thegoogle.com  zone) the following:

the line labeled “a” in Figure 6(a). Note that by adding pam-r dig  @ns1.google.com WWW.GooGle.COm
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NS Vendor Pct. Population
JHSOFT simple DNS plus 39%
incognito DNS commander 1.9%
v2.3.1.1-4.05.1

DJ Bernstein TinyDNS 1.05 0.5%

ISC BIND 8.3.0-RC1 - 9.4.0a0 7%
menandmice QuickDNS 1.5%
Sourceforge JDNSS 0.1%
Timeout and no matches 50%

Table 1: DNS Servers Reporting 0x20 mismatches.

The returned answer should repeat the query, bit for bituihc
ing the chosen case variation. One must also check this leehav
under relatively high volumes, over time, and from differkta-
tions.

Unfortunately, there is no available academic testbed &halvn
DNS authority servers. So, to evaluate if DNS servers coatdire
our encoding schema gracefully, we scanned the Internestom
for 3 weeks, targeting the authority servers listed in.ttan and
.net
(in aggregate), on average; our probes amounted to somdigmil
queries, spread across every DNS server listed in these dhBsz

The results of our scans are shown in two matrices, in Table 2.

DNS-0x20 compliant. It appears, however, that less tha@ of
the servers behave this way.

Type Mismatch | Mismatch pct.[ Domain scanned
.com TLD 15451 0.327% 4786993
.net TLD 4437 0.204% 2168352

Table 2: Authority servers preserving 0x20 encoding, by TLD

Thus, over 99.7% of all DNS servers we studied could support
our DNS-0x20 encoding scheméthout changing their code base.
Those that don't support it appear inconsistent in theittéizing”
of queries. We therefore deem that 0x20 is not a radical tefar
from existing protocols, and very likely to be adopted. W& wi
of course test this view in our IETF standards submissiorichvh
seeks to codify what authority servers appear to already do.

6. RELATED WORK

Our proposal fits into the larger debate about how to betteirse
DNS systems. In [26], the authors consider how transitivetifvia
insecure secondaries) provides another potential avematéck-

zone files. These zone files list some 75 million name servers ing DNS servers. Our work, in contrast, proposes a precisgemo

for characterizing the risk to a DNS server, and is restlittepoi-
soning attacks, rather than attacks on secondaries.
Some proposed standards RFCs have considered improving DNS

There appear to be just a few DNS servers that do not perform security. For example, TSIG [33] or SIG(0) [2], and TKEY [3]

proper DNS-0x20 encoding, under certain circumstancedo- Al
gether, they amount te: 0.3% of the servers we contacted. We
tended to observe a failure to preserve DNS-0x20 encodings u
der very high query volumes, e.g., dozens of identical gsepier
second, for the same domain.

Table 1 shows the results of DNS fingerprinting scans of these
servers. A few of these authority servers, e.g., BIND, am@m
(because of source code) to DNS-0x20 compliant. AlthougtfSDN
fingerprinting is approximate, we surmise that some nete/(aikd
not the DNS servers) have server load balancers or hardweet a
erators for their DNS farm. We are continuing our effortsderi-
tify and contact the operators of these networks. Notaldpgte
recently changed the behavior of itgoogle.com host, to be
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all seek to improve message integrity. TSIG and SIG(0) ugs ke
between servers to verify messages. These techniques afhil
fective against forgery attacks, have proved difficult tpldg, be-
cause of the need for key pairing between servers, and thieir s
time synchronization requirements. TKEY solves the keyritis-
tion problem, but has considerable computational costsrtay
be leveraged in a DDoS attack on the DNS server. DNS-0x20, by
contrast, iextremely light weight, and requires no coordination be-
tween pairs of DNS communicators. But unlike TSIG, SIG(QJ an
TKEY, DNS-0x20 does not provide strong support against DNS
forgery. Instead, DNS-0x20 raises the bar.

A recent proposed IETF standard called “Domain Name Sys-
tem (DNS) Cookies” is related to our approach [1]. Like our ap



proach, DNS Cookies attempt to provide weak, yet practiddSD
transactional protection, but creating@RT RFRoption. The DNS
cookie is essentially an HMAC of the requestor’s IP, andgaan
tion. While still lightweight compared to other DNS trantsan
protection systems, e.g., TSIG, DNS Cookies do requiretanbs
tially more implementation. Specifically, it requires DNftiators

and responders make code changes to handle the DNS coakies. |
comparison, DNS-0x20 is even lighter weight, and requindy o
implementation on a single recursive resolver to work.

7.1 Future Works

We endeavored to cregbeactical DNS-based security enhance-
ments that can be rapidly adopted. No doubt, there will beyman
issues that arise in DNS-0x20 implementation that we haveore
sidered. For example, as alluded to in Section 1, there m&gype
management issues to consider.

Our future work will address other efficient, stateless ehco
ing schemes for domain names, using the 0x20 bitset of querie

We will also consider modifications and implementationtsigees

A recent IETF draft on DNS forgery resilience discusses many for resource-limited systems, such as embedded devicelsane

aspects of DNS poisoning [4]. We recommend the IETF draft as
an excellent overview of DNS poisoning, and practical ceunt
measures.

DNS poisoning motivated the work in [37], where the authors
proposed DoX, a peer-to-peer DNS replacement. Their approa
requires the creation of verification channels, using a B2Ees.

In contrast, our system uses an existing channel in the wgrki

DSL systems. Although our system does not penalize reeursiv
DNS servers that refuse to implement DNS-0x20, our futurekwo

will also consider techniques to update deployed embeddéd D

systems. We will also consider policy options for DNS-0x20 r

cursive servers, so they can identify and work around the(few

0.3%) DNS servers that may not support DNS-0x20 encoding.
We also note that DNS-0x20 does not create, but rather agploi

DNS system. Similarly DoX requires a peer system to improve for peneficial purposes, a covert channel within DNS. Futuoek

DNS security. Our approach can be implemented by a singlerec
sive server today, and immediately improves the integritsnes-
sages to authority servers.

We believe that the work most related to ours is found outside
of the DNS field. TCP SYN Cookies were first proposed by DJ
Bernstein and Eric Schenk in 1996, as a means to stop resexice
haustion DDoS attacks on TCP stacks [10]. The idea behind SYN
Cookies is superficially similar to our DNS encoding scheBeth
save server state to efficiently associate two packet evetitse.
Both add this state by overloading the meaning of a protoetl.fi

will measure the capacity of such a channel, and note how DNS-

0x20 encoding indirectly contributes to a reduction in thpacity
of a malicious (if somewhat obvious) covert channel.
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two meanings: that from the protocol, and also an HMAC. Ran-
domized DNS ports, also proposed by DJ Bernstein, uses a simi
lar field-overloading logic. We believe DNS-0x20 is in thatre
spirit: field overloading yields additional state, and carmdone by
only one party in a transaction to improve security.

7. CONCLUSION

DNS poisoning attacks present a persistent, ongoing ttodiase
Internet’s critical infrastructure. There have been margppsed
solutions, both from the operator and academic communifies
lack of adoption and delays in deployment suggest the need fo
very-light weight, practical improvements to DNS securitye
therefore considered solutions that provide incompletarsty, but
nonetheless offer measured improvements.

To be successful, we argued that such a protocol must: (a) re-
quire no radical changes to the DNS infrastructure; (b) madke
major changes to the existing protocol; and (c) be backweods
patible, so that even just a few DNS servers can elect to &atlopt
We believe these elements will speed the adoption of therisgcu
measure.

DNS-0x20 encoding meets these requirements, but nedgssari
at the cost of complete protection. It does not require acedde-
structure of the DNS infrastructure, and can be adopteciendlly
by recursive servers. With small exceptiors (.3%) the world’s
authority servers appear to already preserve the encodivegre.
Indeed, DNS vendors are now incorporating the system irg th
code bases.

But unlike complete, heavy-weight solutions to DNS poisani
DNS-0x20 encoding does not provide strong guaranteesdnsir
action integrity. Using large trace files, we found that oerage,
DNS messages can have an additional 12-bits of state. The slo
adoption of other, more complete DNS transaction protaciics-
tems suggests the immediate need for this light-weightisolu
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necessarily reflect the views of the National Science Fdimnla
and the Department of Homeland Security.
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