
Increased DNS Forgery Resistance
Through 0x20-Bit Encoding

SecURItY viA LeET QueRieS

David Dagon
Georgia Institute of

Technology

dagon@cc.gatech.edu

Manos Antonakakis
Georgia Institute of

Technology

manos@cc.gatech.edu

Paul Vixie
Internet Systems Consortium

Paul_Vixie@isc.org

Tatuya Jinmei
Internet Systems Consortium

Jinmei_Tatuya@isc.org

Wenke Lee
Georgia Institute of

Technology

wenke@cc.gatech.edu

ABSTRACT
We describe a novel, practical and simple technique to make DNS
queries more resistant to poisoning attacks: mix the upper and
lower case spelling of the domain name in the query. Fortuitously,
almost all DNS authority servers preserve the mixed case encod-
ing of the query in answer messages. Attackers hoping to poison
a DNS cache must therefore guess the mixed-case encoding of the
query, in addition to all other fields required in a DNS poisoning
attack. This increases the difficulty of the attack.

We describe and measure the additional protections realized by
this technique. Our analysis includes a basic model of DNS poi-
soning, measurement of the benefits that come from case-sensitive
query encoding, implementation of the system for recursiveDNS
servers, and large-scale real-world experimental evaluation. Since
the benefits of our technique can be significant, we have simultane-
ously made this DNS encoding system a proposed IETF standard.
Our approach is practical enough that, just weeks after its disclo-
sure, it is being implemented by numerous DNS vendors.

General Terms
DNS, DNS poisoning, DNS transaction security, DNS forgery re-
sistance, protocol security, network security, DNS security

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS ’08, Virginia USA
Copyright 2008 ACM ...$5.00.

DNS poisoning attacks present a persistent, ongoing threatto
server operations. While there are a variety of DNS poisoning tech-
niques, those directed at large cache servers often use two steps:
(a) they force the recursive server to perform a lookup; and then
(b) spoof misleading DNS answers, using the source address of the
authority server. A successful attacker can change a DNS cache
entry, and redirect all users of the victim DNS server to arbitrary
proxy locations. When done to obtain transactional information
(e.g., banking), this technique is called pharming (or large-scale
phishing) [27].

Numerous solutions have been proposed to prevent DNS poison-
ing, e.g., whitelisting [14], cryptographic systems [33],and many
client-based systems have been suggested. Solutions requiring changes
to the DNS infrastructure, however, face larger hurdles in deploy-
ment. For example, DNSSEC [5] and DLV [34] use cryptography
to provide strong DNS messaging integrity. However, these ap-
proaches require significant changes to the world’s DNS infrastruc-
ture: the signing of zones, the creation of policies to manage those
keys, and the deployment of DNSSEC-aware clients and servers.

Other DNS security solutions contemplate even larger changes to
the network infrastructure, e.g., the creation of DHT-based naming
or cooperative naming systems that replace DNS [24, 37]. Even if
these systems prevent poisoning, they are more likely to findadop-
tion in new, developing network architectures, such as P2P systems,
compared to existing network systems. DNS is so widely used,de-
ployed in tens of millions of systems, and so central to everyother
protocol, that one must expect it will survive the creation of novel
replacement solutions.

The goal of our work is to devisepractical security solutions for
DNS that make resolvers more resistant to poisoning. Specifically,
we desire the creation of DNS light-weight forgery-resistance tech-
nology that has several properties:

1. No Radical Changes. DNS improvements should ideally re-
quire no large-scale replacement or modification of existing
DNS infrastructure. (If large changes were needed, one could

1

argue that zone owners should instead just deploy DNSSEC.)

2. Protocol Stability. Improvements should require no alter-
ation of the DNS protocol, which would in turn require reim-
plementation of DNS server and client code. (Surveys have
shown there are tens of millions of DNS servers deployed
world-wide, many on embedded devices [8, 25]. Amending
them to handle a new protocol is likely cost-prohibitive.)

3. Backward Compatible. Any improvements should be op-
tional, and not disrupt other technologies that rely on existing
DNS standards.

We present a defense technique against poisoning that satisfies
these requirements. We propose the mixed-case encoding of query
and reply messages between recursive and authority servers. For
example, instead of querying forwww.example.com , recursive
DNS servers would instead query forwwW.eXamPLe.cOM, or
some other pattern of case variations.

Sincealmost all authority DNS servers preserve the case encod-
ing of DNS queries, bit-for-bit, as presented by the recursive server,
only the recursive servers need to change how they format ques-
tions.

The pattern of mixed-case encoding of domain names, unique to
each transaction between DNS initiators and responders, provides
an additional means to track messages between servers. We call our
encoding system “DNS-0x20” after the bit position used to manip-
ulate case.

The main contributions of this paper include:

• We propose DNS-0x20, a simple change to the formatting of
DNS queries. We have implemented DNS-0x20, and have
offered the technology as an IETF standards proposal [32].
At this writing, the proposal has progressed to working group
status. As further proof that our scheme is practical, work-
able, and useful, numerous DNS vendors (at this writing) are
now incorporating DNS-0x20 encoding into their servers and
products–just weeks after the idea was first proposed.

• We present an in-depth analysis of the cache poisoning at-
tack and the ID field vulnerability. We use an basic model of
DNS poisoning, but extend it to consider parameters (e.g.,
server diversity) commonly used in DNS operations. We
show that DNS-0x20 encoding increases message integrity
far more than authority and recursive diversification.

• To show how DNS-0x20 encoding improves resolver secu-
rity, we study the number of additional bits available, based
on a large-scale DNS traffic trace. For short domains, of
course, the benefits are less. Nonetheless, since each ad-
ditional bit doubles the search space of the attacker, even
small improvements obtained through DNS-0x20 results in
a query stream that is exponentially harder to successfully
attack. While not offering complete security, our system sig-
nificantly raises the bar.

Section 2 presents a succinct overview of DNS, and essential
background on DNS poisoning. Readers already familiar withDNS
may skip to Section 3, where we offer a model of DNS poisoning.
Our encoding system is presented in Section 4, and is evaluated in
Section 5.

2. BACKGROUND
A critically-important component of the Internet infrastructure,

the Domain Name System (DNS) [21, 22], maps between names

and addresses. DNS is a complex protocol with numerous control-
ling RFCs. We therefore focus on only those details relevantto
DNS forgery attacks. Readers requiring a more general overview
may consult [31].

2.1 DNS Overview
In DNS, domain names are composed of labels, separated by pe-

riods, which correspond to namespaces in a hierarchical tree struc-
ture. Each domain is a node, and the bottom-up concatenationof
nodes creates a fully qualified domain name. A zone is collection
of such nodes, constituting a separate tree structure, withthe zone’s
start of authority, or SOA, at the apex. The contents of theSOA(ei-
ther mappings of labels to hosts, or further downward delegation),
is available from “DNS authority servers”. In DNS nomenclature,
these authority servers are sometimes called the SOA.

There are two other DNS resolvers typically involved in poison-
ing attacks: recursive resolvers, and (less frequently) stub resolvers.
A recursive resolver is what one normally thinks of as a “DNS
server”. Such resolvers accept queries from users, understand the
zone hierarchy system, and properly implement the various rules
and RFCs to obtain and cache answers.

DNS initiators on host machines are called stub resolvers. They
typically don’t interact with the zone hierarchy, and with afew ex-
ceptions, don’t cache answers. Instead, they implement enough
DNS logic to pose basic queries to recursive servers.

A short example illustrates how these three classes of DNS sys-
tems interact. Assuming no intermediate caching, resolving a do-
main name likewww.example.com potentially requires numer-
ous steps:

• First, the stub resolver sends the query to the recursive server.
In our example, we assume no previous resolutions whatso-
ever remain cached.

• Next, the recursive resolver consults with the root servers,
which are the authority for the empty label (the dot,“.” ,
implicit at the end of all fully qualified domain names). In
this example, the root servers would indicate a downward
delegation of the “com. ” zone to other authority servers.
(For example, the client might be told to visit the DNS server
at a.gtld-servers.net. , run by VeriSign, and further
be given the IP address of that DNS server as “glue” to avoid
additional lookups).

• Next, the recursive server will consult with the “com. ” zone
authority servers, which again will indicate further down-
ward delegation to theexample.com. zone. (For exam-
ple, instead of being given an answer, the client might be
told next to visitns1.example.com. , or the appropriate
authority server for the zone.1)

• Next, the recursive server consults theexample.com. zone,
which would reveal the host address record (or “A record”)
for www.example.com.

• Finally, the answer is returned to the stub resolver, and cached
by the recursive resolver to assist in future resolutions.

Each one of these consultations involves the recursive resolver
expecting an answer from a remote authority server–either an in-
dication of further delegation or a terminating RRset. A DNSpoi-
soner could anticipate or induce this chain of resolutions and, be-
fore the authority responds, inject false answers with spoofed source
1At this writing, theNSfor theexample.com are the hostsa and
b in the zoneiana-servers.net ; however, we’ve simplified
this sample to presume an authority atns1.example.com .

2

addresses. This form of DNS poisoning is a packet race. The re-
cursive servers accept whichever answer arrives first–so long as the
arriving message matches a few simple transactional requirements.

2.2 DNS Poisoning
To better understand the transactional issues in DNS poisoning,

we can reduce the complexity of DNS lookups into a simplified
model. Figure 1 shows a basic conceptual model of these three
DNS actors critical to a DNS poisoning attack. In Figure 1, the
stub resolver first queries a caching server (labeledA? in the dia-
gram). Since in our example, the recursive lacks a cache entry for
the query, it contacts the authority server (labeledSOAin the dia-
gram). The answer (labeledIN A in Figure 1) is returned to the
recursive server, which caches and sends the answer to the stub.
Note that we have omitted any reference to the zone hierarchies.

For purposes of our analysis, DNS has but a single messaging
format, whether used to ask or answer a query. The protocol for-
mat for DNS messages includes a 16-bit ID field, and a query field
holding a wire representation of the domain name. Figure 1 shows
how the ID field is used to establish the uniqueness of each mes-
sage.

A DNS poisoner’s task, in the simple case, is to guess the 16-bit
query ID field. Figure 1 shows a DNS poisoner offering several
(spoofed source) DNS answers to a recursive server (indicated as
the “craftedIN A ” answers in the diagram). If the attacker guesses
the ID field, and her packet arrives before the authority server’s
answer, the recursive server will accept and cache her malicious
answer.

Clearly, DNS poisoners are most effective when they can guess
the ID field. Early versions of DNS servers deterministically in-
cremented the ID field (until OpenBSD developer Theo de Raadt
suggested they be randomized). In [19, 16], Klein demonstrated
that if the ID field is not securely randomized, it can be attacked
successfully after a few interactions with the server.

Because there are only 65,536 possible ID field values, previous
work has noted the use of birthday attacks, and techniques toex-
ploit weak random number generation [15, 16, 17, 18, 19, 28],see
also [37].

Accordingly, some DNS implementers have sought additional
sources of entropy to protect server messaging. D.J. Bernstein [9]
first suggested using the UDP source port fields, to show additional
correspondence between queries and answers. In this approach, re-
cursive DNS servers would send a query, using a random 16-bit
source port, and (conceptually) listen over some 65K open sockets
for the appropriate reply. Not all source ports might be used(for
example, one might want to avoid well known ports< 1024 typi-
cally used by other protocols) [12], and of course pools of sockets
could be used instead. But regardless of the implementation, DNS
servers that use both the ID field and source port have≈ 230 to
≈ 232 possible combinations that an attacker must guess (depend-
ing on how the server handles reserved ports).

Recently, Dan Kaminsky announced a technique to replaceNS
records by performing a series of nonce queries [13]. In thistech-
nique, the attacker merely induces a randomA? query, and spoofs
answers with appropriateIN A answersas well as anNSupdate.
If the spoofed attack fails to match the ID field, another random
A? query is generated, and another round of spoofed answers is
sent. Eventually (within≈ 6 seconds on most networks), a match-
ing ID field is generated by the attacker, and the attacker uses the
authority section of the winning packet to evict the previous cached
NSrecord. This innovative approach reduces the attack time from
weeks to seconds, allowing trivial control of DNS cache lines. An
unprecedented multi-vendor response followed [30]. For the most

part, DNS vendors defended against the Kaminsky-class attack by
implementing port randomization to “grow the key space”. DNS
vendors also changed their glue-handling policies to better validate
or reject the rogueNSupdate.

In the DNS attacker/defender cat-and-mouse game, DNS opera-
tors continually look for additional opportunities to improve trans-
action integrity, and attackers search for weaknesses in implemen-
tations, and other methods to predict transaction tokens.

3. BASIC DNS POISONING MODEL
While others have shown that DNS stub resolvers can be sub-

verted [8], our concern is in protecting the recursive resolver in its
transactions with the authority servers. To do this, we firstneed to
characterize the risk of poisoning to any server.

Many of the basic mechanical steps in DNS poisoning are well-
known to attackers. For example, anticipating when a recursive
server will initiate a DNS query is straightforward. Attackers can
iteratively observe cache values over time (and initiate attacks when
previously valid cached entries time out and are queried again).
Similarly, open recursive servers can be forced to do lookups, e.g., [8].
Additionally, secured DNS servers might be obligated to initiate
lookups for domains that the attacker sends to the attentionof pro-
tected networks (e.g., by interacting with mail servers, firewalls, or
logging webservers, which in turn resolve domains associated with
the sessions).

Without loss of generality, we use the scenario where an at-
tacker identifies and queries open recursive (OR) servers. Without
a cached record, recursive servers need to start “upstream”itera-
tive queries in order to locate the authoritative servers. As noted in
Section 2, portions of the iterative SOA discovery may be cached
(e.g., the authority server for the TLD may be cached). Figure 2
shows all of the various stages of this iterative process, assuming
no caching takes place.

The x-axis of Figure 2 indicates time. The period between steps
t5 and t6 in the diagram constitutes thevulnerable window for a
DNS poisoning attack. During this△t period, the OR waits for an
answer from the SOA. Attackers can send malicious answers tothe
OR, and repeat the process until they guess the appropriate ID field,
or the authority finally responds.

Figure 2 shows (in densely packed arrows) numerous packets
sent by the attacker to the recursive server. The diagram shows a
progression that finally matches the ID field. Each constitutes a
single guess of the required ID field and port values. In our model,
we also assume the answer’s TTL (or caching period) is such that,
if the attack fails, the attacker must wait a lengthy period of time
before trying again. (The poisoner is free to try again, of course,
but must wait TTL seconds–assumed to be a very long time.)

Definition 1. We say a DNS server is forgery resistantwhere TTL ≫

△t, and the chance of an attack being successful within △t time is
low.

We realize that terms such as “low” are unclear. After all, de-
termined attackers may try an attack, regardless of the chance of
success. We clarify Definition 1 with the following assumption:

Assumption 1. If attack is not 10% likely to succeed within Tmax,
we deem the DNS server is forgery resistant.

We pick 1 day forTmax, a time that matches a very commonly
used TTL period (86400 seconds). Further, one day is a reasonable

3

Figure 1: Simplified model of DNS resolution, and poisoning.

Figure 2: The attacker’s time window for a cache poisoning
attack on a DNS server during a iterative query.

period of time during which DNS logs could (should) be read by
an administrator, or the poisoning attack otherwise noticed by IDS
equipment.

We also note that, while 10% is clearly arbitrary, it provides us
with a simple means of assessing DNS poison resistance. Absent
protocols such as DNSSEC, all DNS servers are vulnerable to some
level of poisoning attack. The goal is to make the chance of success
as low as possible.

For a particular context, depending on the value of the target,
one can adjust this value, and determine the resistance of a DNS
deployment to poisoning. Note that the purpose of our work isto
demonstrate an improvement in security. Using this assumption
lets us show therelative improvement in forgery resistance, as dis-
cussed in Section 5. Thus, a threshold of 10% is suitable for our
purposes.

Clearly, the RTT (or delay between the OR and SOA), plays an
important role in the attacker’s chances of success. If△t is large,
the poisoner can send more spoofed packets, one of which might
match the required transactional ID field and port numbers. Even
in a Kaminsky-class attack (which is largely bandwidth limited),
the RTT determines the number of spoofed packets one can send.
As noted in Section 2, many DNS vendors have also changed their
glue handling policies so that rogueNSupdates are inspected and
re-validated. This means RTT remains one the most importantvari-
ables for an attacker.

In practice, the RTT for DNS messaging varies, since recursive
and authority DNS servers could be located anywhere. Fortunately,
there are known techniques to measure the RTT between any tu-
ple of open recursive and authority servers. In [11], Gummadi, et
al., described “King”, a measurement technique that uses repeated
probes of open recursive servers. In general, King uses two queries
to measure the RTT between a recursive and authority server:one
for a nonce record that is not in cache, and a second, duplicate query
that gets answered from the recursive’s newly populated cache. The
time difference between the two is the RTT between the recursive
and authority servers.

To observe variability in RTT, and suggest reasonable bounds for
estimating△t (which in turn determines the number of attack pack-
ets that can be sent) we implemented a larger, expanded version of
King. We followed several steps.

4

1. First, we obtained lists of open recursive servers, from both
the Measurement Factory’s study, [36], and by contacting the
authors of [8], who measured tens of millions of such servers.
We mapped each open recursive to an Autonomous System
(AS), and randomly selected 5,000 resolvers from ripencc,
arin, apnic and 500 from afrinic servers. We further verified
the hosts were still open recursive.

2. We then created a domain, created an NS for the domain, and
made sure itsNSpropagated to the parent zone.

3. We next “primed” each open recursive to make sure they
had cached the root servers, TLDs, and required intermedi-
ate zones. (This avoided measuring the time needed by the
recursive to locate the authority server.)

4. We then used the following probe technique, for hundreds of
random labels within our domain. For each random label,
Ri, we asked from several locations:

• Iteratively asked the OR for the labelRi. I.e., we made
sure it had not somehow cached the answer already. We
recorded the response time astA.

• Recursively asked the OR forRi again. I.e., we forced
it to consult the authority server. We knew from previ-
ous steps that the parent zone information and NS for
our zone were already cached. We measured this time
astB

• Iteratively asked the OR forRi again. We noted the
time it took astC .

• Calculate: RTTi = tC − tB . As a sanity check, we
also verified thattC−tB ≈ tC−tA. I.e., the difference
between the recursive andany iterative probe should
be the same. (The observed variance, due to inherent
variability in network delays, is reported in Figure 4,
and discussed below.)

5. After noting theRTTi for each1 . . . n round of queries, we
calculated the average RTT between our SOA and the recur-
sive server.

The distribution of RTT times, from the stub resolver’s perspec-
tive, appears in Figure 4(a). A CDF plot of these RTT times is
shown in Figure 4(b). There are several observations one canmake.
First, these measurements generally fit the prevailing wisdom of
DNS operators that all DNS messages take anywhere 100 to 400
milliseconds to complete, with a long tail taking much longer due
to drops, timeouts, and other problems (e.g., server failure).

Second, if the domain is cached, then the average query/answer
response time is less than 100 millisecond. On the other handif the
query was not cached it can take close to 400 milliseconds forthe
recursive server to present an answer back to the resolver.

Our small study helps us understand the dimensions of△t. For
a given percentage of queries (say, the RTT for 90% of all lookups
between an OR and SOA tuple), and can estimate the RTT, and
from there determine the number of “guesses” an attacker canmake
before the correct authority answer arrives.

Definition 2. We can therefore state the chance of successfully
poisoning a DNS server, for a single packet:

We assume:
α = Number of Different DNS IDs (universally216 or 65,535

values)

β = Number of Source Ports (conceptually216).
γ = Number of Ports excluded (often 1024, or depending on

kernel resources [12].)
θ = Number of authority servers and recursive IPs. Many au-

thority clusters include multiple DNS servers with independent pub-
lic IP addresses (to provide power and geographic diversity). A
recursive server normally RTT sorts the servers, and then queries
the closest host. No RFC mandates this, however, and recursive
can also randomly select SOA serverθi. Additionally, some recur-
sive servers are multi-homed, and could select any routablesource
address for its query.θ is the sum of all public facing addresses
used by the recursive and authority servers. In addition to the port
and query ID, an attacker has to spoof the correct authority source
address, and send this to the correct recursive address.

Psuccess(1st) =
1

α ∗ (β − γ) ∗ θ

In the common case of a server employing both ID and source
port randomization, with 3 authority servers, this amountsto:

Psuccess(1st) =
1

216 ∗ (216 − 1024) ∗ 3
≈

1

12.7B

In sendingn packets, an attacker may succeed with:

Psuccess(n) =
n

α ∗ (β − γ) ∗ θ

Other parameters of course affect the actual chance of success.
Bandwidth and traffic loss are also critical variables we’venot in-
cluded in our model. However, with the pervasive availability of
botnets, compromised machines, and proxies, we assume an at-
tacker would not be constrained. A more complex model would
introduce this as a separate constraint. Since network measurement
studies have generally observed that bandwidth correlatespositively
to RTT [7], we omitted this parameter in our simplified model.

Figure 3 shows the chance an attack will be successful against a
variety of defenses, and illustrates the properties of the simplified
model. The logscale x-axis depicts the number of attack packets.
Based on the RTT study (and assuming a window of 100ms, with
the attacker using a 100Mb/s connection), some 13,000 packets can
be sent. The linear y-axis shows a range ofθ, the combined IPs of
the authority and recursive servers. The logscale z-axis shows the
probability of a successful attack. RFC 1912 recommends a small
number of authority DNS servers, and no more than≈ 7 [6]. While
not a standard, this advice is general wisdom, and even largeenter-
prise zones (e.g., search engines, Fortune 500 companies) have just
three or four public IPs for their authority server farms.

The upper mesh drawn in Figure 3 shows the rate of success
against a DNS server using just ID field randomization and a fixed
port. Unless significant numbers of additional authority servers are
brought online (in excess of those normally used, and more than
those recommended by RFC 1912), the chance of an attacker suc-
cessfully poisoning a DNS server rises with the number of attack
packets. In general, Figure 3 shows that IP diversity provides a
linear increase in security, while port randomization provides an
exponential improvement.

The lower mesh in Figure 3 shows a much better resistance to
forgery attempts. One might be tempted to think that port random-
ization has solved DNS poisoning completely. While clearlyuse-
ful, [28, 29], port randomization can be overcome by determined
attackers able to send large amounts of traffic [20]. We desire addi-
tional means of security for several reasons:

• Not every recursive DNS server can implement port random-

5

Figure 3: Probability of DNS poisoning attack success, for fixed
and randomized ports.

ization, since it poses unique engineering challenges. Poten-
tially, a server using source port randomization might haveto
select(2) over thousands of open sockets, opening and
closing them as they are used. For embedded systems, im-
plementers may be left with expensive poll techniques. As
noted in [8], there are likely millions of recursive serversin
embedded systems.

• Some DNS servers are more important targets, (e.g., ISP
DNS servers that could potentially yield millions of victims).
Even if a DNS server used both the ID field and port random-
ization, it may still present a tempting target for persistent,
ongoing, low-grade attacks.

We therefore need additional DNS protection measures, not merely
to increase forgery resistance, but also to provide a diversity of de-
fense options for a variety of platforms.

4. DNS-0X20 BIT ENCODING QUERIES
As noted in Section 2, DNS labels are case insensitive, and in

fact no DNS message assigns any meaning to case differences of
letters. Further, even if a zone configuration file contains aparticu-
lar case pattern, e.g.,WWW.EXAMPLE.COM, queries using any case
pattern, e.g.,www.example.com will be answered. Case for-
matting may be preserved in cache lines, in service of trademarks;
however matching and resolution is entirely case insensitive.

It turns out that, with minor exceptions, all queries are copied
from the initiator’s packet, exactly into the response. Based on the
available open source implementations that exhibit this behavior, it
appears this behavior comes as a side-effect of efficient program-
ming. Instead of copying the DNS query in memory, it is rewritten,
in place, just as it arrived over the wire. I.e., the authority servers
flip source port and IP fields, change flags, checksums, and adjust a
few parameters (e.g., authority and answer sections)in place. Thus,
answer messages contain the query fieldin the same case pattern
as originally offered by the DNS initiator.

This provides an opportunity to use the 0x20 bit of any ASCII
letter (in the ranges0x41 . . . 0x5A and0x61 . . . 0x7A , e.g.,
A . . . Z anda . . . z) in the question name, to encode transac-
tional state information. The mixed pattern of upper and lower case

Figure 5: A proposed algorithm for encoding DNS-0x20 bits
into queries. While other techniques are possible, this approach
is stateless, and allows for simple verification of the answers
with constant memory overhead.

letters constitutes a channel–one that can be used to improve DNS
security.

An example shows how this encoding can trivially correspondto
a unique query. The following question names will be treatedas
equal by a responder (for purposes of cache matching), but can be
treated as unique by a DNS initiator:

Domain Name Field Value

www.example.com 1111111111111

WWW.EXAMPLE.COM0000000000000

WwW.eXaMpLe.CoM 0101010101010

wWw.ExAmPlE.cOm 1010101010101

In the second column, we can indicate a numerical value that
represents the encoding, where lowercase == 1, and uppercase ==
0. The DNS initiator can use this encoding as an additional means
of verifying message integrity.

To efficiently encode a query, we propose a simple algorithm.
Figure 5 illustrates the following steps:

1. As an input, a domain name input arrives: either an answer
from a server, or a query from a stub resolver. Figure 5 shows
the arrival ofIBM.com as a query string.

2. First, one transforms the query field into a canonical format,
e.g., all lowercase.

3. Second, one uses a chosen encryption scheme to encrypt
the canonical query, e.g., perhaps with AES [23], and a key
shared by all queries on the recursive server. This is illus-
trated as step A in Figure 5. This step could equivalently
use a small number of keys, one for a given time epoch.
(Key management is beyond the scope of this algorithm, but
briefly noted below.)

4. Since the resulting cipher block is longer than the original
query in terms of bytes, bits are read in sequential fashion
from the cipher block. The query field, calledbuff is read

6

(a) RTT Density (b) ECDF of RTT

Figure 4: (a) Distribution of RTT times in OR-SOA experiment. (b) Cumulative density of RTT times.

one byte at a time. Step B in Figure 5 shows the encoding of
all “0x20 capable” characters (i.e.,A-Za-z .) In such a case,
one reads the next bitj from the ciphered block, and:

(a) if thejth bit is 0, make thei query character upper case
(i.e.,buff[i] |= 0x20).

(b) if thejth bit is 1, make thei query character lower case
(i.e.,buff[i] &= 0x20).

5. This produces a 0x20-encoded domain name, as shown in
the final segment of Figure 5. This can be sent to an author-
ity server. Likewise, it can be used to verify the query field
returned by an authority server.

The mathematical operations used to change case (∧ = 0x20
and∨ = 0x20, above) suggested the name for the “DNS-0x20
encoding” scheme. I.e., upper and lower case characters are0x20
bits apart in the ASCII table, and the 0x20th bit in a query becomes
a channel.

Since the encoding bits are derived from the domain name, the
system is stateless. That is, the DNS server does not have to re-
member that a query has been sent, and how it encoded the 0x20-
capable characters. If one were to include such state in a DNS
server, it would likely be a DDoS target (at worst), or introduce
performance overheads in accessing main memory (at best). Ob-
viously, other implementations are possible, and we suggest this
merely as an engineering efficiency, not as a requirement.

A secure encoding scheme, such as AES, can be used to make
sure that attackers do not guess the encoding key. We do not con-
sider issues of key management in our proposal. However, we note
that, if a weak encoding system is used, attackers may interact with
an 0x20-encoding DNS server repeatedly, asking for labels in a
zone the attacker controls, in an attempt to mount a plain text at-
tack.

We see this attack as orthogonal. To prevent such attacks on an
0x20-enabled server, the key can be changed out frequently,based
on use or time. Thus, figure 5 shows one of several keys being
selected to encode a query. Keys can be retired after repeated use
to minimize the risk of such attacks. Other implementationsare
also possible.

5. ANALYSIS
Our proposed criteria in Section 1 requires that DNS-based anti-

poisoning measures result in improved security. DNS-0x20 en-
coding improves the forgery resistance of DNS messages onlyin
proportion to the number of upper or lower case characters ina
given query. For example, the domaincia.gov has only26 addi-
tional combinations for the attacker to guess in a poisoningattack,
while licensing.disney.com has218. In the pathological
case, queries for a ccTLD (country code top-level domains, e.g.,
“.cx”), would enjoy just two additional bits.

To see if DNS-0x20 improves the average case, we gathered
DNS traces (using passive DNS [35]) from a university network
for several months, and examined the query fields extracted answer
packets. We selected only packets that hadAA-bit flags enabled,
indicating they contained authority responses. In total, the traffic
amounted to5.6 million packets.

Figure 7(a) shows a correlation between the number of 0x20-
capable characters, and the overall length of the query (excluding
the “.” characters between labels). The vast majority of do-
mains were under 50 characters. For this grouping, over 2/3 of
the characters were 0x20 capable. Some clusters of longer pack-
ets occur at 100, 150 and about 200 character intervals, and have
decidedly fewer 0x20-capable characters. An inspection ofthese
packets shows them to be DNSBL and sensor-related traffic. For
example, some mail servers encode state information in lengthy al-
phanumeric labels, which are then checked against centrally run
DNSBLs.

Figure 7(b) also illustrates how domain depth relates to thenum-
ber of available DNS-0x20 characters. In the far corner of Fig-
ure 7(b), when one encounters domains with≈ 34 labels (i.e. sep-
arated by nearly many periods), the number of usable DNS-x20
characters is small. Domains with such a depth correspond tore-
verse IPv6 lookups, where only theA ...F hex characters (or
dot-separated nibble bits) in IPv6 address can be case flipped.

For the most part, however, Figure 7(b) shows that with increased
domain depth, the number of DNS-0x20 capable characters in-
creases slightly. This is confirmed in Figure 7(d) which compares
domain depth to allnon-0x20 characters. Figure 7(c) gives some
further insights into the variance of DNS-0x20 characters.This
plots the number of digits, in proportion to the length of thedomain

7

(a) Comparison of DNS Transaction Protection Techniques (b) Improved Resistance

Figure 6: (a) A comparison of various DNS anti-forgery techniques shows the improvements due to DNS-0x20 encoding. (b) Effect
of 0x20-Encoding on attack success probabilities, for various character counts. The 0x20 encoding particularly helpsDNS servers
that cannot implement port randomization schemes, becauseof platform resource limitations.

name. There is an obvious linear correlation, where some domain
names are nearly entirely composed of digits. The diagram thus
shows “stair cases” of clusters, with approximately 50, 70,and 90
digits.) This group corresponds to reverse DNS lookups, andother
customized DNSBL formats that use numerical encodings. The
bulk of the observations made in Figure 7(c), however, appear in
the lower corner of the plot, below 50 characters in length. Since,
on average, domain names with≤ 50 characters total have only
≤ 10 characters devoted to numbers, there are many characters
available for DNS-0x20 encoding.

As a whole, Figure 7 shows there is variation in the number of
DNS-0x20 characters in DNS lookups. The Figure also illustrates
interesting types of lookups (e.g., reverse DNS) that tend to be poor
in DNS-0x20 lookups. While such queries could be poisoned, we
suspect that attackers are more likely to target “high value” do-
mains, such as banks, social networking sites, and auction sites.
These domains are composed almost of entirely of 0x20-capable
characters, and would benefit even more from mixed-case encod-
ing. Figure 8(a)-(b) presents a CDF and histogram of the 0x20
characters in all domain queries. It demonstrates that overall, 25%
of domain queries provide approximately 20 0x20-capable charac-
ters; about 80% had at least 12 available 0x20 characters.

To express the average security improvements of DNS-0x20, we
therefore define a convenience functionℓ, which returns the num-
ber of 0x20 characters in a domain name. A DNS server that per-
forms both ID field and port-encoding will have, on average,ℓ̄ ad-
ditional bits of entropy, or232+ℓ̄ possible values. As shown above,
for many types of queries,̄ℓ ≈ 12. Note that each additional bit
doubles the number of combinations that an attacker must guess
correctly. Exponential growth is punishing, particularlyfor larger
exponents. Figure 6(a) shows the search space an attacker must
guess against, for a simple encoding ofibm.com . The x-axis is the
total number of bits available to encode transaction identities. The
y-axis indicates the number of possible combinations (or the de-
nominator in any probability model for successful guessing). If the
DNS initiator merely used the ID field, and a single (non-variable)
source port, the additional benefits of 0x20-encoding are shown in
the line labeled “a” in Figure 6(a). Note that by adding port ran-

domization, the DNS server enjoys the growth curve found in lines
“b” and “c”. This plot also shows that excluding well known ports
(e.g.,≤ 1024) is just a linear reduction of an exponential term, does
not significantly affect outcomes. (I.e.,216 ≫ 1024).

Using DNS-0x20, we can restate our simple model of DNS poi-
soning. The chance that thenth packet would successfully poison a
DNS server, for the domains,d, usually handled by the DNS server:

PCumulativeSuc(n) = 1−
n−1
Y

i=0

„

1 −
1

2 ¯ℓ(d) ∗ α ∗ θ ∗ (β − γ) − i

«

Figure 6(b) plots the resulting probability of success for an at-
tacker. Unlike the plot in Figure 3, we fix the number of additional
authority servers to 3 (a conservatively high number usually seen
in enterprise networks; most networks tend to have just two). The
average number of 0x20 characters handled by the server,¯ℓ(d),
is represented on the y-axis. Figure 6(b) shows how DNS-0x20
has the most improvement for DNS servers using only the random-
ized ID field and a single port. The chance of success dips with
more 0x20 characters in each query. (As noted, the average num-
ber of such characters was 12 in our sample study, with a median
of 16.) While not as dramatic a reduction as the use of randomized
ports (which provide at least 14 bits on average), 0x20 encoding re-
duces the attacker’s chance of success. Recall that above a certain
threshold, exponential growth becomes quite punishing. Each bit
of DNS-0x20 encoding doubles the work an attacker must perform
to achieve similar poisoning results.

5.1 0x20 probing
Our criteria for a practical DNS-based protection system also re-

quires that it be widely deployable. To evaluate this, we checked
which authority servers supported and preserved DNS-0x20 encod-
ings. Conceptually, this can be done by posing a mixed-case query
to authority servers regarding labels within their delegation zone.
For example, one might askns1.google.com (one of the listed
authorities for thegoogle.com zone) the following:

dig @ns1.google.com wWW.GooGle.COm

8

(a) Query Length vs. 0x20 Chars (b) Domain Depths vs. 0x20 Chars

(c) Query Length vs. Digits (d) Domain Depths vs. Other

Figure 7: (a) Correlation plots of query lengths against thenumber of 0x20-available characters. (b) Domain depth vs 0x20 charac-
ters. Since most high-value user sights (e.g., banks) are only 3LDs, the decline in 0x20-characters in deeper domain depths may not
be as significant. (c) Query length and digits. (d) Domain depth vs other other characters.

9

(a) CDF of 0x20 Characters in Trace (b) Histogram of 0x20 Character Counts

Figure 8: (a) CDF of number of 0x20 characters in domain names, observed in the passive DNS trace. (b) Histogram of the number
of 0x20 characters.

NS Vendor Pct. Population

JHSOFT simple DNS plus 39%
incognito DNS commander
v2.3.1.1 – 4.0.5.1

1.9%

DJ Bernstein TinyDNS 1.05 0.5%
ISC BIND 8.3.0-RC1 - 9.4.0a0 7%
menandmice QuickDNS 1.5%
Sourceforge JDNSS 0.1%
Timeout and no matches 50%

Table 1: DNS Servers Reporting 0x20 mismatches.

The returned answer should repeat the query, bit for bit, includ-
ing the chosen case variation. One must also check this behavior
under relatively high volumes, over time, and from different loca-
tions.

Unfortunately, there is no available academic testbed of all known
DNS authority servers. So, to evaluate if DNS servers could handle
our encoding schema gracefully, we scanned the Internet non-stop
for 3 weeks, targeting the authority servers listed in the.com and
.net zone files. These zone files list some 75 million name servers
(in aggregate), on average; our probes amounted to some 7 million
queries, spread across every DNS server listed in these TLD zones.

The results of our scans are shown in two matrices, in Table 2.
There appear to be just a few DNS servers that do not perform
proper DNS-0x20 encoding, under certain circumstances. Alto-
gether, they amount to≈ 0.3% of the servers we contacted. We
tended to observe a failure to preserve DNS-0x20 encodings un-
der very high query volumes, e.g., dozens of identical queries per
second, for the same domain.

Table 1 shows the results of DNS fingerprinting scans of these
servers. A few of these authority servers, e.g., BIND, are known
(because of source code) to DNS-0x20 compliant. Although DNS
fingerprinting is approximate, we surmise that some networks (and
not the DNS servers) have server load balancers or hardware accel-
erators for their DNS farm. We are continuing our efforts to iden-
tify and contact the operators of these networks. Notably, google
recently changed the behavior of itsl.google.com host, to be

DNS-0x20 compliant. It appears, however, that less than0.28% of
the servers behave this way.

Type Mismatch Mismatch pct. Domain scanned

.com TLD 15451 0.327% 4786993

.net TLD 4437 0.204% 2168352

Table 2: Authority servers preserving 0x20 encoding, by TLD

Thus, over 99.7% of all DNS servers we studied could support
our DNS-0x20 encoding schemewithout changing their code base.
Those that don’t support it appear inconsistent in their “flattening”
of queries. We therefore deem that 0x20 is not a radical departure
from existing protocols, and very likely to be adopted. We will
of course test this view in our IETF standards submission, which
seeks to codify what authority servers appear to already do.

6. RELATED WORK
Our proposal fits into the larger debate about how to better secure

DNS systems. In [26], the authors consider how transitive trust (via
insecure secondaries) provides another potential avenue for attack-
ing DNS servers. Our work, in contrast, proposes a precise model
for characterizing the risk to a DNS server, and is restricted to poi-
soning attacks, rather than attacks on secondaries.

Some proposed standards RFCs have considered improving DNS
security. For example, TSIG [33] or SIG(0) [2], and TKEY [3]
all seek to improve message integrity. TSIG and SIG(0) use keys
between servers to verify messages. These techniques, while ef-
fective against forgery attacks, have proved difficult to deploy, be-
cause of the need for key pairing between servers, and their strict
time synchronization requirements. TKEY solves the key distribu-
tion problem, but has considerable computational costs that may
be leveraged in a DDoS attack on the DNS server. DNS-0x20, by
contrast, isextremely light weight, and requires no coordination be-
tween pairs of DNS communicators. But unlike TSIG, SIG(0) and
TKEY, DNS-0x20 does not provide strong support against DNS
forgery. Instead, DNS-0x20 raises the bar.

A recent proposed IETF standard called “Domain Name Sys-
tem (DNS) Cookies” is related to our approach [1]. Like our ap-

10

proach, DNS Cookies attempt to provide weak, yet practical DNS
transactional protection, but creating anOPT RRoption. The DNS
cookie is essentially an HMAC of the requestor’s IP, and transac-
tion. While still lightweight compared to other DNS transaction
protection systems, e.g., TSIG, DNS Cookies do require substan-
tially more implementation. Specifically, it requires DNS initiators
and responders make code changes to handle the DNS cookies. In
comparison, DNS-0x20 is even lighter weight, and requires only
implementation on a single recursive resolver to work.

A recent IETF draft on DNS forgery resilience discusses many
aspects of DNS poisoning [4]. We recommend the IETF draft as
an excellent overview of DNS poisoning, and practical counter-
measures.

DNS poisoning motivated the work in [37], where the authors
proposed DoX, a peer-to-peer DNS replacement. Their approach
requires the creation of verification channels, using a P2P system.
In contrast, our system uses an existing channel in the working
DNS system. Similarly DoX requires a peer system to improve
DNS security. Our approach can be implemented by a single recur-
sive server today, and immediately improves the integrity of mes-
sages to authority servers.

We believe that the work most related to ours is found outside
of the DNS field. TCP SYN Cookies were first proposed by DJ
Bernstein and Eric Schenk in 1996, as a means to stop resourceex-
haustion DDoS attacks on TCP stacks [10]. The idea behind SYN
Cookies is superficially similar to our DNS encoding scheme.Both
save server state to efficiently associate two packet eventsin time.
Both add this state by overloading the meaning of a protocol field.
In the case of SYN Cookies, a selected TCP sequence number has
two meanings: that from the protocol, and also an HMAC. Ran-
domized DNS ports, also proposed by DJ Bernstein, uses a simi-
lar field-overloading logic. We believe DNS-0x20 is in that same
spirit: field overloading yields additional state, and can be done by
only one party in a transaction to improve security.

7. CONCLUSION
DNS poisoning attacks present a persistent, ongoing threatto the

Internet’s critical infrastructure. There have been many proposed
solutions, both from the operator and academic communities. The
lack of adoption and delays in deployment suggest the need for
very-light weight, practical improvements to DNS security. We
therefore considered solutions that provide incomplete security, but
nonetheless offer measured improvements.

To be successful, we argued that such a protocol must: (a) re-
quire no radical changes to the DNS infrastructure; (b) makeno
major changes to the existing protocol; and (c) be backwardscom-
patible, so that even just a few DNS servers can elect to adoptit.
We believe these elements will speed the adoption of the security
measure.

DNS-0x20 encoding meets these requirements, but necessarily
at the cost of complete protection. It does not require a radical re-
structure of the DNS infrastructure, and can be adopted unilaterally
by recursive servers. With small exceptions (≈ 0.3%) the world’s
authority servers appear to already preserve the encoding scheme.
Indeed, DNS vendors are now incorporating the system into their
code bases.

But unlike complete, heavy-weight solutions to DNS poisoning,
DNS-0x20 encoding does not provide strong guarantees for trans-
action integrity. Using large trace files, we found that on average,
DNS messages can have an additional 12-bits of state. The slow
adoption of other, more complete DNS transaction protection sys-
tems suggests the immediate need for this light-weight solution.

7.1 Future Works
We endeavored to createpractical DNS-based security enhance-

ments that can be rapidly adopted. No doubt, there will be many
issues that arise in DNS-0x20 implementation that we have not con-
sidered. For example, as alluded to in Section 1, there may bekey
management issues to consider.

Our future work will address other efficient, stateless encod-
ing schemes for domain names, using the 0x20 bitset of queries.
We will also consider modifications and implementation strategies
for resource-limited systems, such as embedded devices andhome
DSL systems. Although our system does not penalize recursive
DNS servers that refuse to implement DNS-0x20, our future work
will also consider techniques to update deployed embedded DNS
systems. We will also consider policy options for DNS-0x20 re-
cursive servers, so they can identify and work around the few(≈
0.3%) DNS servers that may not support DNS-0x20 encoding.

We also note that DNS-0x20 does not create, but rather exploits
for beneficial purposes, a covert channel within DNS. Futurework
will measure the capacity of such a channel, and note how DNS-
0x20 encoding indirectly contributes to a reduction in the capacity
of a malicious (if somewhat obvious) covert channel.

Acknowledgements
This material is based upon work supported in part by the Na-
tional Science Foundation under Grant No. 0627477 and the De-
partment of Homeland Security under Contract No. FA8750-08-
2-0141. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors anddo not
necessarily reflect the views of the National Science Foundation
and the Department of Homeland Security.

8. REFERENCES

[1] Donald E. Eastlake 3d. Domain name system (dns) cookies.
http://tools.ietf.org/html/
draft-eastlake-dnsext-cookies-03 , 2008.

[2] D. Eastlake 3rd. Dns request and transaction signatures
(SIG(0)s).
http://tools.ietf.org/html/rfc2931 ,
September 2000.

[3] D. Eastlake 3rd. Secret key establishment for DNS (TKEY
RR).http://tools.ietf.org/html/rfc2930 ,
September 2000.

[4] A. Hubert and R. van Mook. Measures for making dns more
resilient against forged answers.
http://tools.ietf.org/html/
draft-ietf-dnsext-forgery-resilience-06 ,
July 2008.

[5] M. Andrews. The dnssec lookaside validation (dlv) dns
resource record, rfc 4431.
http://tools.ietf.org/html/rfc4431 , 2006.

[6] D. Barr. Common dns operational and configuration errors.
http://tools.ietf.org/html/rfc2845 , 1996.

[7] Saad Biaz and Nitin H. Vaidya. Is the round-trip time
correlated with the number of packets in flight? In
Proceedings of the ACM SIGCOMM Internet Measurement
Conference (IMC’03), 2003.

[8] David Dagon, Niels Provos, Christopher P. Lee, and Wenke
Lee. Corrupted dns resolution paths: The rise of a malicious
resolution authority. InProceedings of Network and
Distributed Security Symposium (NDSS ’08), 2008.

11

[9] DJ Bernstein. The dns_random library interface.
http://cr.yp.to/djbdns/dns_random.html ,
2008.

[10] DJ Bernstein. SYN cookies.
http://cr.yp.to/syncookies.html , 2008.

[11] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble.
King: estimating latency between arbitrary internet end
hosts. InProceedings of the 2nd ACM SIGCOMM Workshop
on Internet measurment, pages 5–18, 2002.

[12] Internet Assigned Numbers Authority. Port numbers.http:
//www.iana.org/assignments/port-numbers ,
2008.

[13] Dan Kaminsky. Its the end of the cache as we know it.
http://www.doxpara.com/DMK_BO2K8.ppt , 2008.

[14] JungMin Kang and DoHoon Lee. Advanced white list
approach for preventing access to phishing sites. In
International Conference on Convergence Information
Technology, 2007.

[15] Amit Klein. BIND 8 DNS cache poisoning.http:
//www.trusteer.com/docs/bind8dns.html ,
2007.

[16] Amit Klein. BIND 9 DNS cache poisoning.http:
//www.trusteer.com/docs/bind9dns.html ,
2007.

[17] Amit Klein. OpenBSD DNS cache poisoning and multiple
OS predictable IP ID vulnerability.http:
//www.trusteer.com/docs/dnsopenbsd.html ,
2007.

[18] Amit Klein. Windows DNS cache poisoning.http://
www.trusteer.com/docs/microsoftdns.html ,
2007.

[19] Amit Klein. PowerDNS recursor DNS cache poisoning.
http://www.trusteer.com/docs/
powerdnsrecursor.html , 2008.

[20] John Markoff. Leaks in patch for web security hole.
http://www.nytimes.com/2008/08/09/
technology/09flaw.html , August 2008.

[21] P. Mockapetris. Domain names - concepts and facilities.
http://www.faqs.org/rfcs/rfc1034 , November
1987.

[22] P. Mockapetris. Domain names - implementation and
specification.
http://www.faqs.org/rfcs/rfc1035 , November
1987.

[23] NIST. Announcing the advanced encryption standard (aes).
ttp://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf , 2001.

[24] KyoungSoo Park, Vivek S. Pai, Larry Peterson, and Zhe
Wang. Codns: Improving dns performance and reliability via
cooperative lookups. InIn Proceedings of the Sixth
Symposium on Operating Systems Design and
Implementation(OSDI ’04), 2004.

[25] V. Ramasubramanian and E.G. Sirer. The design and
implementation of a next generation name service for the
internet.Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for
computer communications, pages 331–342, 2004.

[26] Venugopalan Ramasubramanian and Emin Gun Sirer. Perils
of transitiive trust in the domain system. InProceedings of
the ACM SIGCOMM Internet Measurement Conference
(IMC’05), 2005.

[27] Sid Stamm, Zulfikar Ramzan, and Markus Jakobsson.
Drive-by pharming.http:
//www.cs.indiana.edu/~sstamm/papers/
drive-by-pharming-router-dns-stamm-ramzan-jakobsson
pdf , 2006.

[28] Joe Stewart. DNS cache poisoning – the next generation.
http://www.secureworks.com/research/
articles/dns-cache-poisoning/ , 2003.

[29] US Cert. Vulnerability note vu#457875.
http://www.kb.cert.org/vuls/id/457875 ,
2002.

[30] US-CERT. Multiple dns implementations vulnerable to cache
poisoning.
http://www.kb.cert.org/vuls/id/800113 ,
2008.

[31] Paul Vixie. DNS complexity.ACM Queue, 5(3), April 2007.
[32] Paul Vixie and David Dagon. Use of bit 0x20 in DNS labels

to improve transaction identity.http://tools.ietf.
org/html/draft-vixie-dnsext-dns0x20-00 ,
2008.

[33] Paul Vixie, O. Gudmundsson, D. Eastlake 3rd, and
B. Wellington. Secret key transaction authentication for DNS
(TSIG).http://tools.ietf.org/html/rfc2845 ,
May 2000.

[34] S. Weiler. Dnssec lookaside validation (dlv), rfc 5074.
http://tools.ietf.org/html/rfc5074 ,
November 2007.

[35] Florian Weimer. Passive dns replication.
http://www.enyo.de/fw/software/
dnslogger/first2005-paper.pdf , April 2005.

[36] Duane Wessels. The measurement factory open recursivedns
reports.http://dns.measurement-factory.com/
surveys/openresolvers/ASN-reports/ , 2007.

[37] Lihua Yuan, Krishna Kant, Prasant Mohapatra, and
Chen-Nee Chuah. DoX: A peer-to-peer antidote for DNS
cache poisoning attacks. InProceedings of the IEEE
International Conference on Communications (ICC’06),
volume 5, pages 8164–9547, June 2006.

12

