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Abstract—In this paper, we present an analysis of a new
class of domain names: disposable domains. We observe that
popular web applications, along with other Internet services,
systematically use this new class of domain names. Disposable
domains are likely generated automatically, characterized by a
“one-time use” pattern, and appear to be used as a way of “sig-
naling” via DNS queries. To shed light on the pervasiveness of
disposable domains, we study 24 days of live DNS traffic span-
ning a year observed at a large Internet Service Provider. We
find that disposable domains increased from 23.1% to 27.6% of
all queried domains, and from 27.6% to 37.2% of all resolved
domains observed daily. While this creative use of DNS may
enable new applications, it may also have unanticipated nega-
tive consequences on the DNS caching infrastructure, DNSSEC
validating resolvers, and passive DNS data collection systems.

Keywords-Disposable Domain Name; Internet Measurement.

I. INTRODUCTION

The domain name system (DNS) is a critical component
of the Internet that maps human-readable names to machine-
level IP addresses. Over the years as the Internet evolved,
more and more service providers use the DNS in ways
for which it was not originally intended. Their primary
objective is to make their network operations more agile
and scalable. Such use cases are often found in content
delivery networks (CDNs) [1], NXDOMAIN rewriting [2],
and URL auto-completion and prefetching [3].

In this paper, we describe a new class of DNS misuse
called disposable domains. Recently, a number of service
providers, such as popular search engines [4], social
networks, and security companies [5], began to heavily use
automatically generated domain names to convey “one-time
signals” to their servers. These disposable domains are often
created on demand in large volumes and belong to common
parent DNS zones (i.e., same name suffix). Moreover,
disposable zones have unique cache hit rate distributions
that distinguish them from non-disposable zones.

While these creative ways of using the DNS enable
new useful applications and performance improvements
for certain types of Internet services, the increasing use
of disposable domains may have unanticipated and even
negative impacts on day-to-day DNS operations for large
Internet Service Providers. Firstly, disposable domain

names are only queried a few times by a handful of clients.
However, when a large number of disposable domains come
into existence, their queries may fill up the cache of local
DNS resolvers. Such an event may cause premature cache
evictions of non-disposable domains, and in turn cause DNS
service degradation within the ISP network. Secondly, these
premature evictions may inflate the traffic between the DNS
resolvers and authoritative name servers. The increased
traffic can cause DNSSEC-enabled resolvers to perform
extra cryptographic operations. Lastly, the pervasiveness
of disposable domains in modern DNS traffic can cause
a significant increase in the storage cost for passive DNS
databases, which are vital for domain reputation systems [6],
[7], [8], and represent an irreplaceable tool for the forensic
analysis of network security incidents [9], [10], [11], [12].

It is therefore important for the research and operational
communities to carefully monitor and analyze the evolution
of the DNS usage in today’s Internet. It is also necessary
to understand under what conditions the current DNS
practices employed by various service providers may result
in unexpected operational problems in the near future. In
this paper, we design a system to automatically discover
DNS zones that use disposable domains and present detailed
measurements on how disposable domains are being used
by large service providers. Specifically, we make the
following contributions:

• We present a study from large scale DNS traffic traces
collected at a large north American ISP (namely Com-
cast) serving millions of end users. Our measurements
show, among other interesting facts, that a very sig-
nificant percentage, 25% of all queried domain names,
33% of all resolved domain names, and 60% of all
distinct resource records observed daily are disposable.

• In order to properly monitor and measure the network
presence of the disposable domains we propose a novel
algorithm that automatically finds DNS zones that
contain disposable domains. Our algorithm accurately
discovers disposable domains by passively monitoring
DNS traffic, with 97% true positive and 1% false
positive rates. Using our system, over the period of 11
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Figure 1: DNS query resolution process.

months, we discovered 14, 488 new disposable zones.
• We discuss the possible negative implications that the

growth of disposable domains may have on the DNS
caching infrastructure, DNSSEC-validating resolvers,
and passive DNS data collection systems.

The rest of the paper is organized as follows. In Section II,
we provide background on DNS and discuss related work.
In Section III, we describe our data collection process and
provide an overview of the characteristics of modern DNS
traffic observed in our dataset. In Section IV, we define
disposable domains and examine their key properties. In
Section V, we provide details of our disposable domain
miner. In Section VI, we discuss the negative impacts dis-
posable domains have on DNS cache, DNSSEC, and passive
DNS database. We conclude the paper in Section VII.

II. RELATED WORK

A. DNS Concepts and Terminology

In most cases, establishing an Internet connection from a
client to a server begins with a DNS resolution that maps a
domain name (e.g., www.example.com) to an IP address
(e.g., 192.0.12.0). As shown in Figure 1, the client (stub
resolver) first issues a query to the Recursive DNS server
(RDNS). If the resolution request from the client is not in
the cache, the RDNS will perform an iterative query. This
process begins at the root server and works its way down
through the top level domain name (TLD) server and name
server of example.com until the RDNS server receives
the current DNS answer for the original client’s request.
Finally, the RDNS server replies to the client with the
answer received from the name server of example.com.

B. Related Work

1) Passive DNS and DNS Traffic Aggregation:
Weimer [13] was the first to propose passive DNS replication
for forensic analysis and network measurement. The
implementation dnstop passively collects DNS data from
a production network to keep historic DNS information.
Plonka et al. [14] built treetop to collect and analyze passive
DNS traces. They separate traffic into three categories:

canonical, overloaded and unwanted. They showed that
spikes of DNS traffic are typically unwanted or overloaded
traffic. In their taxonomy, unwanted DNS traffic comprises
all unsuccessful DNS resolutions (i.e., NXDOMAINs).
DNS traffic with purposes beyond mapping domains to IPs
are considered overloaded, while the rest are canonical.
At that time, the primary application of overloaded DNS
traffic was for blacklisting purposes. Disposable domains
are more general than the overloaded class. We study DNS
zones used for various services in addition to blacklisting.

2) DNS Traffic Analysis: CDNs are traditionally used
for dynamic request routing via resolution management [1].
Similarly, many Internet services use “domain sharding” to
allow parallel client queries to web content [15]. Vixie [16]
pointed out numerous problems with DNS-based load
balancing. While his work notes the potential decrease
in the effectiveness of caching, Vixie’s analysis focused
on DNS policy, such as “NXDOMAIN Remapping” for
commercial gains, rather than the cache consumption caused
by disposable domains. Our work expands on these issues by
providing experimental results for the caching performance
of disposable domains in general and revealing yet another
misuse of the DNS. Work done by Yadav et al. [17]
detects algorithmically-generated malicious domain names.
Disposable domains are not only generated by an algorithm,
but also have low cache hit rate and are not necessarily
malicious. Berger et al. [18] studied the dynamics of
DNS and proposed stability metrics to classify dynamic
and stable domain names. In contrast, our definition of
disposable domains is a distinct category. Paxson et al. [19]
built a practical system for detecting DNS covert channels,
enforcing a 4kB/day information bound after lossless
compression for enterprise environment, per user, per des-
tination. However, disposable domains can be stealthy and
stay under this threshold. Nevertheless, we can identify them
collectively from the view of the entire disposable zone.

3) DNS Cache Modeling: Jung et al. [20] presented a
trace-driven simulation to measure cache hit rates. Later,
they [21] proposed a cache hit rate model based on the
renewal model of inter-query arrival times and the Time
To Live (TTL) values in DNS cache records. They assume
(1) every data item has the same TTL value, and (2) a
group of clients share a common cache, without local
caches present in the client machines such that DNS
requests can be inferred from TCP connections. Since their
assumptions are not true in our ISP Recursive DNS Server
monitoring scenario, we take a black-box analysis approach
by evaluating the performance of a server cluster with
multiple independent caches.

III. DATA COLLECTION

In this section, we first describe the methodology used
to collect the DNS datasets for our study and explain our
network visibility within a large North American ISP. Then,



we analyze the collected datasets, and elaborate on the
characteristics of modern DNS traffic. This panoramic view
of real-world DNS messages is instrumental to the analysis
of “disposable” domains that we present in Section IV.

A. Traffic Collection and Datasets

We have visibility of all DNS traffic to and from the recur-
sive DNS (RDNS) servers of a large ISP in the Midwestern
US. For quality of service reasons (e.g., load balancing and
fault tolerance), the DNS queries from the ISP customers are
served by a cluster of RDNS servers. This is a fairly typical
configuration for recursive DNS servers in large ISPs.

We can monitor traffic “above” and “below” the RDNS
servers. For example, considering the DNS resolution
scenario in Figure 1, from our network monitoring point,
we were able to observe events indicated by solid arrows:
(1) DNS responses from the RDNS servers to the client (the
stub resolver) (“below” the RDNS servers), and (2) DNS
responses from the authoritative name servers to the RDNS
servers (“above” the RDNS servers). We only record the
answer section of the DNS response packets, which reflect
answered queries from client and from RDNS server cluster.

To perform our measurements, we use two types of DNS
datasets: a full passive DNS (fpDNS) dataset, and a reduced
passive DNS (rpDNS) dataset. The fpDNS dataset includes
all DNS traffic observed at the monitoring point. Each entry
in the fpDNS dataset is a resource record (RR), a tuple
containing the timestamp of the DNS resolution event (in
the granularity of seconds), an anonymized client ID of the
host that issued the DNS request, the queried domain name,
the DNS query type, the time-to-live value (TTL), and the
resolution data (RDATA) contained in the response. The
query types in our dataset are A, CNAME, AAAA types.
The rpDNS dataset includes the distinct (no duplicates)
resource records (RRs) from all successful DNS resolutions
observed from the same monitoring point in the ISP. DNS
requests with no valid response, such as NXDOMAIN, are
excluded. We represent the rpDNS dataset in a given day,
as tuples containing the queried domain name, the DNS
query type, RDATA, and the first date the tuple was seen.

Since we are dealing with real-world ISP-level DNS
traces, the size of the compressed fpDNS dataset is around
60GB per day in February, and around 145GB per day
in December, 2011. Therefore, we have limits on the
amount of data we can obtain over a certain period and
the overall monitoring period for our experiment. To that
extent, we built the fpDNS dataset using data collected
over 24 days: from 02/01/2011 to 02/07/2011, 09/02/2011,
09/13/2011, 11/14/2011, from 11/28/2011 to 12/10/2011,
and 12/30/2011. The total size of our fpDNS dataset is
2.67TB. On the contrary, the rpDNS dataset has smaller
storage size, as it only contains distinct RRs, with a size
of seven to nine GBs per day. Overall, the rpDNS dataset

includes the deduplicated resource record data derived from
the fpDNS dataset, for 11/28/2011 to 12/10/2011.

B. Notation

Next, we describe some notation that we will use
throughout the rest of the paper. A domain name d consists
of a set of labels (or substrings) separated by a period. We
refer to the effective rightmost label as the top-level domain
(TLD). This segment captures the delegation aspects of
the zone, and not merely a lexical splitting of the domain
name. For example, we treat com.cn and co.uk as
effective TLDs, since all further child labels under those
zones represent name server delegations, usually to separate
organizations and entities, who in turn control what resides
in the child zone. This approach is similar to the “public
suffix list” from Mozilla [22]. Our definition is a superset of
this effort, and corrects the omission of dynamic DNS zones.

The second-level domain (2LD) represents the two right-
most child labels separated by a period. Similarly, the third-
level domain (3LD) consists of the three rightmost labels,
and so on. In general, the N th-level domain (NLD) refers
to the N rightmost labels. For instance, given domain name
d = a.example.com, TLD(d) = com, 2LD(d) =
example.com, and 3LD(d) = a.example.com.
Throughout the text, we use the notion of “zone” loosely.
It can be 2LD, 3LD, or any N th-level domain. We provide
further clarifications on the notion of a zone as necessary.

C. Full Passive DNS Database

Before we introduce the notion of “disposable” domain
names, we provide some insights from analyzing the
fpDNS dataset. From a high-level view, the most interesting
properties are the traffic volumes above and below the
RDNS servers, the caching properties, and the deduplicated
resource record volumes. These analyses will provide some
tell-tale signs for disposable domain names, which the DNS
community has not thoroughly defined nor studied.

In February there were 4.2 billion RRs observed below
the RDNS servers, and 500 million RRs above them.
In December the volume increased to 10 to 11 billion
RRs observed below the RDNS servers, and 800 million
RRs above them. Moreover, in December, we observe
approximately 30 million unique domain names every day,
where 20 million of them were successfully resolved.

1) DNS Traffic Volume: First, we examine the DNS
resource record (RR) volumes above and below the recursive
DNS servers. As Figure 2 shows, there is an order of
magnitude less traffic above the recursive servers than below,
as a result of caching. Moreover, we can clearly observe the
human-driven diurnal effect on DNS traffic (e.g., the traffic
volume dropped after midnight and rose at 10am local time).

In order to put these observations about the DNS resource
record volumes into perspective, we selected two of the most
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Figure 2: Traffic profile of fpDNS dataset, from 12/01/2011 to 12/06/2011.
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popular 2LD zones, Google and Akamai 1, and placed them
alongside the overall numbers. Google reflects user-driven
behavior, such as checking emails or web searches. Zones
from Akamai reflect the DNS activity for the largest content
delivery network. These two popular zones collectively
account for less than half of the total DNS traffic, which
clearly shows that there are other zones contributing a
non-negligible portion of traffic to our fpDNS dataset.

Additionally we plot in Figure 2 the unsuccessful DNS
resolutions (NXDOMAIN). The NXDOMAIN traffic con-
stitutes almost 40% of the traffic above the RDNS servers,
and only 6% of traffic below the RDNS servers. This is
likely because the resolvers in the monitored networks were
not honoring the negative cache, ignoring RFC2308 [23].

We consider the long tail of lookup volume to be domain
names that receive fewer than 10 lookups per day. In fact,
more than 90% of all RRs have lookup volumes lower than
10 on 02/01/2011 (Figure 3a). Moreover, the long tail of
lookup volume increased from 90% to 94% in 2011.

2) DNS Cache Hit Rates: In order to present the cache
hit rate (CHR) observations from the fpDNS dataset, we
first define domain hit rate. We consider the domain hit rate
of an object in the following way:

DHR(object) = Number of Cache Hits in a Day
Number of Total Queries in a Day (1)

We consider a resource record to be the storage object
in the cache. Every cache hit corresponds to an answer

1Google: google.com. Akamai: akamai.com, akamai.net, akamaiedge.net,
akamaihd.net, edgesuite.net, akamaitech.net, akadns.net, akam.net.
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Figure 4: Cache hit rate distribution from fpDNS.

issued from the RDNSs observed below the recursive DNS
servers that does not trigger a cache miss. Every cache miss
corresponds to an answer issued to the RDNSs observed
above the recursive DNS servers. The number of all queries
is simply the sum of the answers seen below the recursive
DNS servers.

The domain hit rate distribution shows the caching
performance of all distinct RRs. For example, Figure 3b
presents the cumulative distribution of DHR for 02/01/2011.
We can see that 89% of all RRs have domain hit rate of
0%, as part of the DNS long tail phenomenon. Here, we
consider the long tail of domain hit rate to be domain
names with domain hit rate of 0%. Also, we observe that
the percentage of RRs with zero domain hit rate increased
from 89% to 93% in 2011.

Based on domain hit rate, we define cache hit rate. Given
our visibility above and below the recursive DNS servers,
and our inability to gain access to the actual recursive DNS
software, we choose to treat the recursive DNS servers as a
“black box”. In the renewal counting process [21], we are
interested in the number of cache hits every time an object
is updated in the cache, i.e., every time there is a cache
miss. However, we are unable to track the exact hits per
cache miss, so we simplify all the hit rates for the same RR
as the domain hit rate for the day. For instance, an object
can trigger one cache miss with three queries, and another
cache miss with two queries, resulting in 0.66 and 0.5 cache
hit rate values, respectively. However, what we can measure
is that the object triggered 2 cache misses and there were
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5 total queries for the object in a day, so we consider the
cache hit rate to be 0.6 for all 2 misses. More formally, we
define the cache hit rate of an object as following:

CHRi(object) = DHR(object) (i = 1, 2, 3, ...n) (2)
n = Number of Cache Misses in a Day.

The cache hit rate distribution is the cumulative
distribution of all CHRi values for all RRs. Figure 4a
presents the distribution of CHR for 11/10/2011. The CDF
looks like a slightly skewed linear line. The figure shows that
58% cache hit rates are lower than 50%. We also measured
the CHR distribution from 13 days (in 2011), which can be
seen in Figure 4b. The long-term cache hit rate distribution
also follows a similar skewed linear line. Although the dis-
tribution approximates each cache hit rate value by the same
domain hit rate in the day, we show in Section IV-B that this
type of distribution can distinguish between disposable zones
and non-disposable zones accurately. Since the distribution
reflects the effect of query volume, domain hit rate, and
implicitly the TTL, we are able to capture all the information
in our classification process by using this distribution.

3) DNS Deduplication: We built a reduced passive DNS
dataset from our full passive DNS dataset, using 13 days of
traffic from 11/28/2011 until 12/10/2011. We deduplicated
all the resource records seen during these 13 days, yielding
413,753,934 unique resource records in total.

The volume distribution of newly observed RRs for each
day in the rpDNS dataset is shown in Figure 5. It is worth
noting that the number of new RRs observed every day
decreased by 13,614,102 (30%) on the 13th consecutive
day. Looking at the new Akamai RRs, we also observed a
slight decrease by 128,957 (69%) records on the 13th day.

An important 2LD zone we explicitly examine here is
google.com. Despite what we saw as trends from Akamai
and the overall rpDNS dataset, Google increases its daily
new RRs by 4,264,585 (25%) on the 13th consecutive day.
In fact, Google went from 17,015,510 new unique RRs the
first day to 21,280,095 new unique RRs the 13th day.

An even more interesting observation is that Google
operates 58% of all the RRs in the overall rpDNS dataset.
Looking into the actual percentage of unique RRs every day,

Google is responsible for the 37% of the unique RRs on the
first day. However, it is responsible for 66% of unique new
RRs on the 13th day. It means that Google is constantly
producing new RRs as part of its normal DNS operation and
these RRs are not reused, effectively making them temporary
or “one-time”. In Section V-C, we will elaborate on this DNS
phenomenon. We will see that Google utilizes a large num-
ber of disposable domains, for what appears to be a measure-
ment experiment over DNS. Below in Section VI, we argue
that such use is disposable when the cache hit rate is low
or zero, and the TTL is nonetheless non-zero (i.e., placing
records in cache that will never be re-queried). In the fol-
lowing section, we will precisely define disposable domains.

IV. DEFINING DISPOSABLE DOMAINS

In this section, we define disposable domain names and
elaborate on two key properties: the structure of the DNS
zone that facilitates resolutions for disposable domain names
and the cache hit rates observed from disposable resource
records. Disposable domain names are successfully resolved
domain names that have the following two properties:

1. Their name strings are automatically generated.
Namely, some software generates them in bulk using
an algorithm.

2. The RRs under a given zone are only observed once,
or a handful of times, when they are in the recursive
DNS servers’ cache. More formally, the RRs of child
domains under the zone have a low or close to zero
median value in cache hit rate distribution 2.

The first property helps us focus on domain names
generated automatically. However, being automatically
generated is a necessary but insufficient condition to
characterize a domain as disposable. In order to fully
capture the notion of disposable domains, we must examine
their caching properties. An automatically generated domain
should be marked as disposable when the cache hit rate of
its resource record is very low, and all RRs under the same
zone, that are effectively generated by the same algorithm,
share similarly low cache hit rates.

Note that because of the definition of the cache hit rate,
domains under a zone could be disposable in one network
but not another. Since we focused on discovering disposable
zones in our network’s traffic, this definition allows us
to find these zones and does not preclude our approach
from generalizing to other networks. Comparing disposable
zones among different networks can help discover globally
disposable zones. Due to the coverage of our ISP, however,
we expect many of the disposable zones discovered in our
network to be disposable in other networks as well.

A. Motivating the DNS Zone Structure
In this subsection we provide three real world examples

of zones that facilitate resolutions of disposable domain

2Cache hit rate distribution is defined in Section III-C2.
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(iii)

Figure 6: Sample of disposable (I-III) domain names.

names. We will examine some key properties that disposable
domain names have by examining passive DNS datasets
from major zones like google.com. In Figure 6, we can
see a few sample domain names from three zones that are
disposable. These three zones operated under the control of
eSoft (i), McAfee (ii), and Google (iii).

The first example is eSoft, which appears to be a service
that employs DNS as a storage communication channel in
order to report CPU load, machine up time, memory usage
and swap disk usage. For the second example, according
to McAfee [5], domains shown in (ii) are used for file
reputation queries on behalf of their Global Threat Intel-
ligence File Reputation Service. If any suspicious program
executable, Android Application Package File (APK) or
Portable Document Format (PDF) file is not detected as
malicious by signatures of user’s local Anti-Virus software,
the software will generate DNS queries for file classification
result from the cloud. A suspicious file is defined to be any
file with certain characteristics that malware commonly has,
such as whether the executable file is packed. The queried
name is typically less than 40 byte, including McAfee
version and product information, hash of the suspicious
file, fingerprint information, and environmental information.
The returned answer from McAfee file reputation server
is typically a non-routable IP address in 127.0.0.0/16,
where different IP address has different meaning. Lastly,
domains shown in (iii) are generated by Google’s IPv6
experiment [4]. A small percentage of Google users are
selected for the experiment. Browsers of selected users
perform cryptographically signed background requests after
users search and get the results. The background requests
record IPv4 and IPv6 addresses, image request latency, and
User-Agent string for browser and operating system.

Examining the zone structures from Figure 6 shows that
the randomly generated part is not always the leftmost child
label of the domain. For example, ipv6-exp.l.google.com
(iii) and avqs.mcafee.com (ii) have the leftmost labels (p2
and 0), which are not “random-looking”. Therefore, we
need to check whether each group of labels between “.” are
generated by an algorithm. Furthermore, disposable domains
under the same section of the DNS zone always have the
same number of periods (“.”) in the domain. This is probably
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Figure 7: Cache hit rate distribution for disposable and
non-disposable zones.

due to the specific protocol used by the zone operator. For
example, disposable domains under avqs.mcafee.com always
have 11 periods in the domain. We must consider the actual
structure of the domain names in order to generate statistical
features that can be used to identify disposable domains.

B. Motivating the Cache Hit Rate

In general, resource records of disposable domain names
are used only once or up to a few times while they are in the
recursive DNS servers’ cache. This means that disposable
RRs have very low or zero cache hit rates when they are
updated in the cache. On the other hand, we observe that
non-disposable RRs have relatively good cache hit rates.

We manually labeled 398 zones as disposable, and 401
randomly selected 2LD zones from the top 1,000 Alexa
domain names as non-disposable, from traffic observed on
11/10/2011. While there are usually thousands or millions
of unique disposable domains seen under disposable zones,
we took a conservative approach to include zones with
as few as 15 disposable domains because of our limited
observation window. Figure 7 shows that 90% of cache hit
rates from disposable RRs are zero. On the other hand, 45%
of cache hit rates from non-disposable RRs are over 0.58.

Disposable zone operators do not seem to make use of
the caching benefit of recursive DNS infrastructure because
they use their disposable domain names as temporary
domains. Disposable domains are not strictly looked
up once only, since software making those queries can
sometimes generate the same domain name again. However,
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when any disposable domain is looked up by anyone in
the lifetime of TTL value, it is highly unlikely that the
same domain name will be used by any other client. Since
disposable zone operators want to have full control over
every record under their zone so they can leverage the
recursive DNS servers as their temporary infrastructure for
purposes other than providing IP addresses. This extra level
of control under the disposable zone is very important when
operators (i.e., eSoft) want to deliver content in the domain
names, use the zone as a channel for customized protocols
(DNSBLs, AntiVirus Companies, DNS Tunneling Services),
or even to collect metrics (Google IPv6 experiment).

However, a non-disposable zone is not likely to exhibit
such overall poor caching performance, given all domains
under the same parent zone. Lookups to non-disposable RRs
are less controlled by the zone operator, since non-disposable
domains do not serve one-time purposes. Consequently,
non-disposable zones would have a more “natural” cache
hit rate distribution, which looks more like the linear
cumulative distribution for all resource records in Figure 4.

V. MINING DISPOSABLE DOMAINS

In this section we describe the disposable zone miner
we design, implement and use in order to measure the
prevalence of disposable domain names in ISP networks. We
begin by presenting the necessary features to automatically
discover disposable domain names. We then discuss how
these features can be used in our disposable zone miner.
We conclude this section by providing measurement results
from the actual use of the disposable zone miner in a large
North American ISP.

A. Statistical Features

We first present the necessary notation used to describe the
two statistical feature families. Then we present and motivate
the feature families used to transform the DNS zone infor-
mation into statistical vectors for mining disposable zones.

1) Domain Name Tree Definition: For a given set of
domain names, we generate a domain name tree. The root
of the tree is “.” (root), the children of the root are the
TLDs, the children of the TLDs are the 2LDs, and so on.

We categorize the nodes in the tree as black nodes
or white nodes. We consider a black node to be every
node that has a resource record (RR) in our DNS dataset
within the observation period, and the rest are white nodes.
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Figure 9: Domain Name Tree after decoloring two nodes.
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Figure 8 shows the domain name tree for the set of RRs
of following domain names:

a.example.com, i.1.a.example.com,
2.a.example.com, 3.a.example.com,
4.b.example.com, and c.example.com.

In the tree structure, nodes a.example.com,
b.example.com and c.example.com are child nodes
of node example.com. Nodes 1.a.example.com,
2.a.example.com and 3.a.example.com are child
nodes of node a.example.com. All the nodes under
example.com are its descendants. Colored nodes are
black nodes, while the others are white nodes. If any node
is decolored in the tree, it turns from a black node to a
white node. For example, decoloring a.example.com
and c.example.com result in the tree in Figure 9.

Based on the structural observations of disposable domain
names discussed in Section IV-A, we next group nodes
with the same structure. We define the depth of a black
node as the length of the path up to the root. Nodes within
the same group Gk have the same depth k. For all the
black descendants of the same zone if they have the same
depth, we consider them to have the same structure. For
example, to group black nodes under example.com, we
would get G3={a.example.com, c.example.com},
G4 ={2.a.example.com, 3.a.example.com,
4.b.example.com}, G5 ={i.1.a.example.com}.
All groups of domain will be classified either as disposable
or non-disposable by Disposable Domain Classifier module,
as we will see next.

Our goal is to build statistical features to describe nodes
within the same group. We compute six tree-structure fea-
tures and two cache hit rate features for each set Gk. In order
to compute tree-structure features, we need to get the set of
labels for each Gk to see whether they are algorithmically-
generated. For the previous example, we take the following
sets of labels L3 = {a, c}, L4 = {a, b}, and L5 = {a}, that
are next to the zone under inspection (i.e. example.com).



2) Feature Families: We now discuss the two feature
families and the main motivation behind their selection.

Tree Structure Features: For each set Gk, we calculate
the corresponding set Lk. Let the Shannon entropy of
the characters in the label l be H(l). For all the labels
li(i = 1...m) in the set Lk, we compute the entropy values
H(li). We then use as features the cardinality m of the
set Lk, the maximum, minimum, average, median, and
variance of all H(li) values.

Cache Hit Rate Features: For each set Gk, we
calculate the domain hit rate (as defined in Section III-C2)
and the number of misses for all the resource records
of domains in the set Gk, to generate the cache hit rate
distribution. From the distribution, we take the median, and
the percentage of RRs that have zero cache hit rate as two
statistical features for this family.

Features and Group Intuition: In Section IV and
Figure 6, we discussed the main zone structural properties
of disposable domain names. We saw that operators tend
to use algorithms to create domain names “in bulk” under
certain levels of the master zone. With the Gk sets, we may
capture the properties of the nodes being created by the
operators in the same depth from the root of the DNS tree.

The meaning of the entropy features computed over
the labels in the corresponding Lk sets are twofold. First,
we simply want to see if there are any labels generated
by algorithms at the same level of the tree, which could
indicate disposable domain names. Second, we want to
see if there are outliers in the Lk set using the variance
as a guide. For example, a percentage of the nodes in the
set are used for disposable domain names. However, there
could be some nodes that are created manually and serve
non-disposable domain names. We would like to be able to
capture these zone characteristics during modeling.

Finally, the cache hit rate features are very influential
in our effort to differentiate between disposable and non-
disposable Gk sets. As we have extensively discussed in
Section IV, median values in the cache hit rate distribution
for resource records of non-disposable domain names are
significantly higher than the disposable ones. The cache hit
rate features provide us with the necessary classification
signal to properly model disposable domains.

B. Overview of the Mining System

In Figure 10, we present a process to systematically track
and rank zones that facilitate resolutions for disposable
domain names over the period of a day. As the daily DNS
dataset is being collected (Step 1), it is fed into our system.
We first build the Domain Name Tree that reflects the
current DNS dataset. This is done by the Domain Name Tree
Builder, so the Disposable Domain Classifier can traverse
(Step 2) the zones of the domain name tree, according
to Algorithm 1. The output of the miner is (Step 3) the
disposable classification score for each zone in the tree.

Algorithm 1 Disposable domain name classification process
given the under inspection zone z.

1: if There is no black descendants for z then
2: return
3: end if
4: From all the black descendants of z, identify Gki and

generate Lki , where i = 1, 2, ..., n and n is the number
of different depth values under zone z.

5: Set classifier threshold θ = 0.9
6: for i = 1 to n do
7: p, class = C(Gki

)
8: if class == disposable and p >= θ then
9: for j = 1 to m (number of nodes in Gki ) do

10: Decolor nodej in Gki

11: end for
12: output z, ki
13: end if
14: end for
15: for All the child nodes of z do
16: Run Algorithm 1
17: end for

1) Domain Name Tree Builder: This module processes
the full passive DNS dataset for the system. Its main func-
tionalities are: i) to assemble the daily domain name tree,
and ii) to gather the cache hit rate information for RRs of the
resolved domain names. In the domain name tree, we can
easily get the depth of black nodes, so when necessary, it can
efficiently gather domain names and provide the correspond-
ing Tree Structure Features and Cache Hit Rate Features.

2) Disposable Domain Classifier: The classifier module
traverses the domain name tree and classifies the set of
domain names in the full passive DNS dataset for a single
day. The mining process is composed of two main parts.
First, the Algorithm 1 starts with all the effective 2LDs in the
domain name tree. Then the algorithm identifies groups of
black descendants with the same depth under a zone. Next,
the algorithm will generate the corresponding sets Gk and
Lk for all possible depth values of k (Line 4, Algorithm 1).
Second, the mining process will produce a new statistical
model from known zones that facilitate resolutions for
disposable domains. And the classifier will classify all the
groups in an effort to identify new disposable domain names
(Line 6 to 14). Based on a predefined classification
threshold (90% similar to the modeling class, Line 5 of
Algorithm 1), the classifier will provide a set of classification
results for all currently unknown domain names (Line
7). If any group is classified as disposable, nodes in the
group are decolored in the tree (Line 9 to 11), and the
disposable zone for the group is sent for output (Line 12).
Depending on the classification results of each group, the
Algorithm 1 will either stop (Line 1 to 3) or recursively



continue to search for disposable zones (Line 15 to 17).
Let the classifier be C(Gk) = (p, class), where p

is the probability of Gk that belongs to class. For
our training dataset, we use zones manually verified to
facilitate disposable and non-disposable domain names. The
disposable class contains 398 zones, and the non-disposable
class includes 401 2LD zones, as discussed in Section IV-B.
The training dataset for our classifier contains a small set of
zones in disposable class, which might cause the classifier
to be biased; however, we should note that this is the first
time that anyone has labeled zones as disposable. Thus, we
had to manually label every single zone in the disposable
class by inspecting thousands even millions of domain
names under each zone. The label in the classification
process could be “disposable” or “negative” and it will be
accompanied by a confidence score between zero and one.
For example, if the label is “disposable” with confidence
close to one, this means that domains under the zone with
the same depth k are likely to be disposable. Then, we go
through all the sub-zones under the inspection zone in the
same way, excluding the nodes deemed as “disposable”, and
see if there exists a sub-zone used for disposable domains.

Algorithm 1 shows the exact steps of the disposable
domain name mining process. Using the example domains
from Figure 8 as context, the input to Algorithm 1 is
example.com. We differentiate the nodes as black or
white nodes as we discussed in Section V-A1 and we
proceed with the feature computation process. At this point
for zone example.com we have G3, G4, G5 sets and the
corresponding statistical vectors. We classify them against
an already trained model and we receive the confidence
and class for each vector, i.e., each set Gk. Assuming
G3 is classified as disposable with a confidence over
0.9, a.example.com, c.example.com are decolored
in the domain name tree, yielding the tree in Figure 9,
and the algorithm outputs pair (example.com, 3).
Next, Algorithm 1 is run recursively for all child
nodes of example.com, i.e., a.example.com,
b.example.com, c.example.com. In the case of
c.example.com, the recursion would stop since there
are no black descendants remaining. For a.example.com,
child nodes of a disposable zone can be either disposable
or non-disposable, depending on the classification results.

C. Results

Our measurement results are summarized in Figure 11,
and we will describe the results in detail in this section.

Using traditional model selection methods [24] over
the training dataset, we chose LAD decision tree 3 as the
disposable domain name classifier C. The classifiers we
used in our model selection process in addition to LAD
were Naive Bayes, Nearest Neighbors, Neural Networks

3We omit details on the classification accuracy from each classifier used
during the model selection in the interest of space.
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Figure 12: ROC Curve of selected model LAD tree.

and Logistic Regression. To evaluate the accuracy of the
classifier, we used the standard 10-fold cross validation
methodology [24] on the training dataset. Figure 12
demonstrates the ROC curve of the disposable class for the
LAD tree model. Using θ = 0.9 as our threshold, we obtain
a true positive rate of 92.4% and a very low false positive
rate of 0.6%. If we use the default threshold of θ = 0.5, we
have a 1% false positive rate and a 97% true positive rate.

The disposable zone miner was run over 6 days worth of
data from one recursive DNS cluster at the North American
ISP. Using the fpDNS datasets from these 6 days4, we obtain
classification results over the unknown portion of the dataset.
Over the 6 day period, we found 14,488 zones that use
disposable domains, which are under 12,397 unique 2LDs,
with a confidence of more than 90%. On average, there are
7 periods in disposable domains, indicating that disposable
domains tend to be longer than normal domain names.

1) Prevalence: Disposable domains are widely used
by various industries, including popular websites (e.g.,
Google, Microsoft), Anti-Virus companies (e.g., McAfee,
Sophos, Sonicwall, Mailshell), DNSBLs (e.g., Spamhaus,
countries.nerd.dk), social networks (e.g., Facebook,
Myspace), streaming services (e.g., Netflix), P2P services
(e.g., Skype), cookie tracking services (e.g., Esomniture,

402/01, 09/02, 09/13, 11/14, 11/29 and 12/30.
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2o7.net), ad networks (e.g., AdSense, Bluelink Marketing),
e-commerce business (e.g., Paypal, ClickBank), etc.
Figure 11 illustrates some examples of labeled disposable
zones and newly found disposable zones.

Of the 14,488 disposable zones, we verified that 91
(0.6%) of them were related to content delivery networks
(CDNs). We used a customized list containing 451 CDN
2LDs to analyze the result and found that these 91 zones
are under 24 (5.3%) 2LDs. It is probably because of some
extremely unpopular content being served under specific
CDN sub-zones, making the domains appear as disposable
in our network. These could be false positives or a result of
different level of services provided by CDNs. Since only a
small percentage (0.6%) of disposable zones are CDN zones,
there is a new class of (disposable) domain names that
should be clearly differentiated from CDN related traffic.

2) Growth: Disposable domains are not only widely
used currently, but are also increasingly being used.
Figure 13 shows that for unique domains seen in daily
traffic below the recursives the percentage of disposable
domains increased from 23.1% to 27.6%. Also, of the
daily resolved unique domains the percentage of disposable
domains grew from 27.6% to 37.2% over the year of 2011.
From traffic during 11/28/2011 to 12/10/2011, we observe
that the number of new disposable domains seen every day
is always high, around 5 million to 7 million. However,
the number of new non-disposable domains dropped from
13 million to 1.6 million. So after one day, more than
50% of new domains seen daily are disposable, and after

% of all
Date Volume < 10 disposable tail disposable

02/01/2011 90.09% 28.34% 95.95%
09/02/2011 92.77% 50.60% 96.89%
09/13/2011 93.14% 51.21% 97.50%
11/14/2011 94.01% 59.36% 97.80%
11/29/2011 93.83% 57.34% 97.60%
12/30/2011 93.54% 57.17% 98.50%

Table I: Disposable RRs in low lookup volume tail.
13 days, more than 80% of new domains seen daily are
disposable, since new disposable domains are constantly

% of all
Date zero DHR disposable tail disposable

02/01/2011 88.62% 28.38% 94.48%
09/02/2011 91.59% 50.54% 95.33%
09/13/2011 92.62% 50.93% 96.28%
11/14/2011 93.50% 59.12% 96.73%
11/29/2011 93.02% 57.21% 96.36%
12/30/2011 92.72% 56.96% 97.15%

Table II: Disposable RRs in zero domain hit rate tail.

generated. Moreover, the volume of unique disposable RRs
daily increased from 8,111,274 (02/01/2011) to 29,738,493
(12/30/2011), during which 33,704,127 were observed on
11/14/2011. The percentage of daily unique disposable RRs
increased from 38.3% to 65.5% (see Figure 13).

Disposable domains are growing in the DNS long tail
as well. Table I shows the long tail from the RR lookup
volume. Note that the second column presents the size of
the tail of all RRs, the third column presents the disposable
part of the tail, and the last column presents the fraction
of disposable RRs that are in the tail. The disposable RRs
represent 28% of the tail on 02/01/2011, and increased
to 57% of the entire tail on 12/30/2011. As we observe,
between 96% to 98% of all disposable RRs are in the tail.
On the other hand, in Table II we can see the statistics
of long tail in the domain hit rate distribution of resource
records. Around 96% of disposable RRs belong to the tail,
and the percentage of domains in the long tail that are also
disposable RRs increased from 28% to 57% during 2011. To
summarize, disposable RRs are usually present in the DNS
long tail and the DNS long tail is increasingly composed of
disposable RRs. In the following section, we discuss their
potential impact from the DNS operation point of view.

VI. DISCUSSION

In Section V-C, we showed that disposable domains make
up about 25% of all unique queried domains, and 27% to
37% of all successfully resolved domains daily. In addition,
the number of distinct RRs related to disposable domains
represent an average of 60% of all distinct RRs observed
in a single day. Also, we offered evidence showing that
disposable domains are used by large content providers (e.g.,
Facebook and Google). In this section, we discuss possible
negative effects of the continued growth in the use of dispos-
able domains, and their impact on modern DNS operations
and DNS-related systems. Our main objective is to identify
and highlight some of these possible effects, so that the op-
erational community can anticipate them and plan ahead in
cases where changes to current DNS operations are needed.

A. DNS Caching

In Section IV-B, we showed that disposable RRs are
characterized by very low or zero cache hit rates. This is a
natural consequence of the “one time use” pattern typical of
this new class of domains. As the use of disposable domains
increases, the DNS cache may start to be filled with entries
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that are highly unlikely to ever be reused. Assuming a
typical Least Recently Used (LRU) cache implementation
with a fixed memory allocation (a common configuration
in DNS resolvers, to the best of our knowledge), during
periods of heavy load (see Figure 2) queries to disposable
domains may cause some useful cached non-disposable
domains to be prematurely evicted to make room for
them. In turn, this may have the effect of inflating the
traffic between the DNS resolvers and the authoritative
name servers responsible for the evicted non-disposable
domains, thus increasing the response latency. If this occurs
frequently, caching policies may require adjustments to
mitigate the performance decrease, e.g., disposable domains
could be treated with low priority.

Forcing disposable domains to use a time-to-live value
(TTL) equal to zero is not a feasible solution. First, it may
not be feasible to force all the domain owners to set the
TTL of disposable domains to zero, since they can freely
choose the TTL value they prefer. Figure 14 shows the
TTL distribution for disposable domains on 02/01/2011
and 12/30/2011. Note that X axis is log scale and starts
from zero. There were 0.8% of disposable domains with
a TTL of zero, and 28% of them with TTL = 1 second
on 02/01/2011. However, domain owners switched to using
relatively larger TTL values over time. For instance, in
December, most disposable domains had a TTL of 300s,
as we can see from the highest bar in Figure 14. In
addition, some recursive DNS software implementations
hold resource records into the cache for a minimum number
of seconds, even when their TTL is set to zero [25], [26].

B. DNSSEC-Enabled Resolvers

Once DNSSEC is widely deployed, or even under DLV
signed zones, eventually every domain name under a zone
needs to be signed. There will inevitably be more pressure
on validating resolvers, which will consume more resources.
Clearly, validating signed responses will require higher
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CPU usage, and increased memory needs due to the larger
resource records introduced by DNSSEC specifications
(e.g., DNSKEY, DS, RRSIG [27], [28], [29]). Disposable
domains will naturally, and potentially dramatically, increase
this pressure on validating resolvers. In fact, each queried
disposable domain may require an additional signature
validation whose result will never be reused. Also, the
cache must store not only the disposable RRs, but also their
signatures. This problem may be mitigated in part if the
authoritative servers responsible for the disposable zones
register disposable domains under a single signed wildcard
domain, from which the disposable domains are synthesized.

C. Passive DNS Databases

Passive DNS database systems (pDNS-DBs) have
recently been adopted by the computer security and
networking communities as an invaluable tool to analyze
security incidents and assist DNS operations [14], [13],
[30]. For example, pDNS-DBs have been extensively
used to investigate Operation Aurora [9], attacks to
EMC/RSA [10], and malware infections of Stuxnet [11]
and Flame [12]. Because these types of security incidents
are often discovered months or even years after the attacks
first occurred [9], pDNS-DBs play a vital role to efficiently
archive long-term historic DNS information. Furthermore,
pDNS-DBs are indispensable when constructing dynamic
reputation systems [6], [7], [8] for domain names.

Disposable domains have the effect of increasing pDNS-
DB storage requirement and potentially the query-response
latency, depending on the implementation. In fact, we found
that after bootstrapping a pDNS-DB with over 13 days of
resolution traffic (see Figure 15), 88% of all unique resource
records in the database are disposable, which need to be
stored to maintain a full account of historic DNS resolutions.
Moreover, the percentage of new RRs related to disposable
domains increased from 68% to 94% daily. The problem
can be mitigated by filtering disposable domains and storing
a single wildcard domain in the pDNS-DB. For example, a
domain name like 1022vr5.dns.xx.fbcdn.net can be replaced
by *.dns.xx.fbcdn.net. Using wildcard in the scheme would
reduce 129,674,213 distinct disposable resource records we
have seen to 945,065 (0.7%) resource records.



VII. CONCLUSION

With this paper we describe and build a disposable
zone miner to automatically find disposable domain names.
Using traffic from a large ISP in North America, we
identified and measured a new category of DNS traffic, the
disposable domain, which currently is “lost” in the DNS
noise. We show that, on average, disposable domain names
are responsible for a significant portion of all domain
names observed (25%) and resolved (32%), 60% of unique
resource records observed daily, and 88% of all unique
resource records observed during our 13 day experiments.
Furthermore, we discussed their potential implication to
DNS caches, to the DNSSEC deployment and passive DNS
data collection systems.
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