
Understanding Cross-Channel Abuse
with SMS-Spam Support Infrastructure Attribution

Bharat Srinivasan1, Payas Gupta2, Manos Antonakakis1, and Mustaque Ahamad1,2

1 Georgia Institute of Technology, Atlanta, USA
bharat.srini@gatech.edu, manos@gatech.edu, mustaq@cc.gatech.edu

2 New York University, Abu Dhabi
payasgupta@nyu.edu

Abstract. Recent convergence of telephony with the Internet offers malicious
actors the ability to craft cross-channel attacks that leverage both telephony
and Internet resources. Bulk messaging services can be used to send unsolicited
SMS messages to phone numbers. While the long-term properties of email spam
tactics have been extensively studied, such behavior for SMS spam is not well un-
derstood. In this paper, we discuss a novel SMS abuse attribution system called
CHURN. The proposed system is able to collect data about large SMS abuse
campaigns and analyze their passive DNS records and supporting website proper-
ties. We used CHURN to systematically conduct attribution around the domain
names and IP addresses used in such SMS spam operations over a five year time
period. Using CHURN, we were able to make the following observations about
SMS spam campaigns: (1) only 1% of SMS abuse domains ever appeared in pub-
lic domain blacklists and more than 94% of the blacklisted domain names did not
appear in such public blacklists for several weeks or even months after they were
first reported in abuse complaints, (2) more than 40% of the SMS spam domains
were active for over 100 days, and (3) the infrastructure that supports the abuse is
surprisingly stable. That is, the same SMS spam domain names were used for sev-
eral weeks and the IP infrastructure that supports these campaigns can be identi-
fied in a few networks and a small number of IPs, for several months of abusive ac-
tivities. Through this study, we aim to increase the situational awareness around
SMS spam abuse, by studying this phenomenon over a period of five years.

1 Introduction
The telephony channel has undergone radical changes in the recent past, including its
convergence with the Internet via technologies such as smartphones and Voice over IP
(VoIP). Although this convergence offers many benefits, it also provides malicious actors
the ability to design new attack vectors that combine resources from both the telephony
and Internet channels. For instance, text messages containing web links can be sent
to phone numbers to direct unsuspecting users to malicious websites [19]. Attacks that
exploit the telephony channel can potentially be more effective than traditional attacks
over the Internet, as they can abuse the trust that has traditionally been associated
with telephony. Similar to traditional email messaging, SMS [18] has become a popular
abuse target, as past research efforts have shown [38, 36, 35, 30].

While traditional email spamming activities have been extensively studied, long-term
properties of SMS spam operations are not well understood by the community. SMS
abuse data and long-term network traffic observation of such abuse are necessary to study
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the behavior of SMS spam operations. By using data that spans a period of close to five
years, in this study we aim to present such a long-term analysis of SMS spam abuse. Our
hope is that such analysis will provide better understanding of the network properties
of SMS spam abuse which can be used to build more effective defenses against it.
We call SMS spam cross-channel abuse because it relies on and can be observed

in both the telephony and Internet channels. In other words, such attacks involve
both a telephony resource (e.g., a phone number) and a traditional Internet resource
(i.e., a domain name and/or an IP address). To study cross channel abuse, we explore
how SMS spam campaigns utilize the domain name system (DNS) and other Internet
infrastructure. We build a SMS spam attribution system called CHURN, which is used
to analyze abuse data from a period of five years. CHURN analyzes SMS-spam datasets
from two different abuse reporting sources: passive DNS datasets from a large Internet
Service Provider (ISP), and application layer web information around these SMS spam
campaigns. CHURN’s ultimate goal is the attribution of SMS spam campaigns with
respect to the domain name infrastructure they employ in their abuse activities.

Our SMS spam attribution analysis reveals that cross channel abuse is highly effective
and long lived. We found that the Internet IP infrastructure used by the spammers
to support SMS spam campaigns is surprisingly stable. For example, abuse campaigns
tend to use a handful of IPs in a few networks over several years to continue their
activities. This shows current defenses are either unaware of the abuse infrastructure
utilized by SMS spam campaigns or they are not effectively using such information
to combat cross-channel abuse. We hope that our paper will demonstrate the value of
situational awareness around this problem, which could be used to reduce the potential
for social engineering and other attacks facilitated through such cross channel abuse.
Summarizing, our paper makes the following contributions:
– We build and present a cross-channel attribution system to automate the col-
lection and analysis of SMS spam abuse. Our system, namely CHURN, uses a
hierarchical clustering technique that employs network level, application level, and
popularity-based statistical features to cluster related SMS spam domain names
into campaigns over time.

– Using CHURN, we conduct a five year study that yields attribution results for
a plethora of real world SMS spam campaigns. We use (1) 8.32 million SMS abuse
reports that consist of messages that directed users to scam websites, (2) more
than 56 thousand DNS resource records related to the SMS abuse reports since
2011, and (3) more than 67 thousand web pages reflecting the application layers
of the SMS spam campaign. Our experiment helps us conclude the following:
• We show that a mere 1% of SMS abuse domains appear on public Internet
domain blacklists. Among the blacklisted domain names, 94% appeared on
blacklists weeks or even months after they were first seen in abuse reports.
• We show that the domains are long lived during the period of abuse with over
40% of the SMS spam domains being active for over 100 days.
• We dive deep into the three largest and most long-lived case studies of SMS

spam campaigns identified by CHURN. We show that (1) spammers were able
to operate these campaigns for more than three years, (2) they consistently
used a handful of IPs in a few abuse friendly networks, and (3) the average
SMS spam domain name lifetime was in the order of two months, further
emphasizing the lack of situational awareness around such cross-channel threats.
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2 Background
Spammers have been evolving their operations for more than a decade. It comes as
no surprise that as Internet defenses are bolstered, the telephony channel has become
an attractive spam target. To better understand this, we aim to study the properties
of unsolicited bulk SMS messaging (a.k.a. SMS spam) containing URLs with respect
to the Internet infrastructure that supports this abuse. Since the attack relies on both
telephony and Internet infrastructure (e.g., domains included in SMS spam URLs and
associated IPs), we refer to this problem as “cross-channel abuse”. In this section, we
provide a high-level overview of the ecosystem that facilitates this cross channel abuse.

Delivering SMS Spam at Scale: To successfully “trick” users into scam operations,
spammers need a way to reach potential victims. Because phone numbers come from
a limited name space with a defined format, they can be auto-generated randomly or
picked selectively. Armed with phone numbers, fraudsters can accomplish large scale
distribution of SMS spam in several ways.
1. Disposable SIMs: Spammers can purchase disposable subscriber identification

module (SIM) cards with gateways having slots to hold hundreds of them or use
stolen cell phones and USB modems/Aircards [38] as an entry point into the
cellular networks. They can then program these devices using off the shelf bulk
SMS software or even Arduino [23] micro-controllers to send well crafted bulk SMS
spam.

2. Exploiting Cloud Telephony Services: Legitimate cloud telephony Infrastruc-
ture as a Service (IaaS) providers such as Twilio [21] and Tropo [20], or even
cellular ISPs [38], can be abused by spammers to deliver bulk SMS messages. This
is achieved in one of three ways: (1) creating fraudulent accounts on these platforms,
(2) hijacking existing (legitimate) accounts, or (3) exploiting unprotected SMS
application programming interfaces (APIs) that allow users to transmit a large
volume of SMS messages in an automated fashion3.

3. Bulk SMS Services: Spammers can exploit or collude with existing bulk SMS
services to deliver messages. Sometimes, services offered by legitimate service
providers enable bridging of the email and SMS mediums by allowing email to be
sent as an SMS (or vice versa). This can be abused by spammers.

Monetization: After delivering the spam SMS messages, in order for monetization spam-
mers lure victims into responding to, or interacting with, the message. Specially crafted
messages with easy-to-click URLs provide an effective way to automate such response. On
smartphone-like devices, victims can simply click these URLs and visit a traditional web
site that will lure them into the scam. The key point here is that, while the attack vector
clearly started as a telephony based communication (vis-à-vis, the SMS spam), these
spammers will often try to social engineer the user into a scam using traditional Internet
resources. There are multiple reasons to do this, from minimizing the forensic trail in the
telephony network to re-utilizing already provisioned Internet infrastructure for abusive
actions. Often the content of such illicit webpages can be tailored to the specific scam.

Observing Cross-Channel Abuse: Cross-channel abuse can be observed in both the
telephony and Internet channels. Prior work in combating telephony abuse mainly relied
on call detail records (CDRs) to identify and block phone numbers that originate spam

3 Although Twilio and others have a policy against such abuse [22], spammers often find
ways to violate it [14].
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SMS messages [38, 35]. Cross-channel abuse also requires traditional Internet resources
to direct victims to scam websites. This provides an opportunity to observe such commu-
nications by passively monitoring network traffic (i.e., the DNS resolutions). For example,
when the recipient of an SMS message clicks an embedded link, it typically initiates a
DNS resolution process. The end result of this resolution process is the mapping between
the requested domain and the IP address hosting it. The client device typically requests
the web page associated with the clicked link from the resolved IP address. The DNS visi-
bility at the ISP (cellular or otherwise) recursive resolver level can serve as a great vantage
point to study the SMS spam cross-channel abuse with respect to the Internet channel.

3 Cross-Channel Attribution Engine

Fig. 1: The cross-channel attribution engine.
In this section, we discuss the details of our Cross Channel Attribution Engine

called CHURN. The goal of CHURN is to help understand SMS abuse by attributing
domain names in SMS-spam campaigns. CHURN achieves this by clustering network
(i.e., domain names and IPs) and application (i.e., HTML content) layer signals that
facilitate a given spam campaign. CHURN starts with crowd sourced abuse complaints
and produces attributed campaigns with associated network resources. To accomplish
this, it performs four tasks serially, as can be seen in Figure 1. Next, we describe in
detail each of these four tasks.

3.1 Data Collection Module

Our data collection module takes as input external data source(s) of known SMS-spam.
In our case, this dataset comes from two sources: (i) SMS-spam complaint reports filed
by consumers to the Federal Trade Commission (FTC) [3], which were made available
to participants in the Robocall Challenge [6], and (ii) publicly available SMS complaint
reports from the online portal SMS watchdog [15] 4. While reports from SMS watchdog
were crawled between Jan 2011-Aug 2015, the FTC complaint records were limited
to the period Jan 2011-Dec 2012 consisting of reports with anonymized destination
numbers. Using SMS messages from user complaints as input, we extract the source (e.g.,
phone number), timestamp td, and URL from each SMS-spam report. Using the URLs,
we actively crawl different public and private data sources, which provides information
about both the website and the network hosting infrastructure facilitating the scam.

4 smswatchdog.com was down when we last checked as on 02/18/2016 but snapshots of
it can be found on the Wayback Machine [9].
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Passive DNS Crawler (Network Intelligence): Cross channel attacks, like users respond-
ing to SMS-spam messages, can be observed in the Internet when the recipient of the
message clicks on the URL of a spam message. In this case, a DNS resolution request
will be observable at the local recursive DNS servers. This forensic signal cannot be
used to estimate the global abuse properties of a particular SMS-spam campaign, as
it is non-trivial to obtain global visibility in the DNS recursive plane. However, given
a large enough recursive DNS visibility, it could provide forensic evidence and lower
bounds on the following three questions: (i) how long was the campaign active, (ii)
what was the average lookup volume and a lower bound on the victims that were
targeted by each SMS-spam message, and (iii) what was the domain name and IP
network infrastructure that supported this cross channel abuse?

By gaining access to a large private passive DNS repository, we were able to “crawl”
and collect datasets that could answer these three questions for every domain name
contained in our SMS-spam abuse dataset. As we will discuss in subsection 3.3, the
passive DNS (pDNS) dataset plays an important role in our effort to statistically
describe the network properties of SMS-based abuse.

HTML Crawler (Application Intelligence): We implement both an active and a passive
method to collect datasets that capture application layer properties of the SMS-spam
websites. We download and store the full HTML source from the web page pointed
to by each URL seen in SMS-spam reports. In many cases, however, the websites of
interest were taken down before we could recover any useful intelligence. For such cases,
we relied on the Wayback machine [9].

3.2 DS: Data Sanitization Module

The lifecycle of a spam domain involves multiple phases. In the first phase, when the
threat is active, the domain will point to IP infrastructure that facilitates the spam
operation. Once the spam operation is over, or the domain simply ceases to be used by the
spammers, it will enter a phase when it is “parked” or is taken down by network defenders
or eventually expires. From the threat analysis and attack attribution point of view, we
care to analyze the network infrastructure when the domain is actively used by a spam
campaign. The goal of the sanitization module is to weed out the benign infrastructure
(in the form of legitimate IP addresses) and HTML sources (related to parked domains)
while retaining the network and application information that can be used to analyze the
campaigns. Next, we discuss in detail how we can achieve this sanitization of the datasets.

Filtering the pDNS Datasets: Among the domains included in the URLs received in the
complaints, we first remove any records containing domains historically appearing in the
Alexa [2] top 1 million ranks since 2011. We were able to remove 715 domains using this
filter. Next, we use two heuristics to remove DNS information that is related to legitimate
IP infrastructure from our datasets. The first heuristic aims to capture the popularity
of the infrastructure supporting a domain. Parking IP address space is often used to
host a relatively large number of domains, at least that is how “domaineers” operate.
The number of resource records per IP is a good measure of this as it encapsulates
both the diversity in the domains and the popularity in DNS lookup value to domains
hosted on certain IPs. The second heuristic aims toward the characterization of the
name server list supporting a domain. Some name servers (NS) are well known to be
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associated with parking activities, as they do not try to hide. We create a hard curated
list of such name servers using publicly available information and prior work [44, 8].

More precisely, given a set of pDNS resource records denoted by RR, the sanitization
module uses a filter method that uses parking
IP threshold θp and a name server list, denoted
by NS, to create a filtered set, RRθp,NS, which
consists of all rr∈RR s.t. (i) IP in rr is pointed to
by <θp resource records, and (ii) the name server
for the domain name d in the rr /∈ {NS}. Figure 2
shows the cumulative distribution function (eCDF)
of the number of resource records hosted per IP in
our dataset and the cut-off threshold θp. In total
we were able to identify ∼1% (232 out of 23,269)
IPs as parking and ignore records associated with
them for the shown value of θp.
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Fig. 2: CDF of Resource Records
per IP with cut-off threshold θp.

Filtering Application-level Data: To identify the full HTML sources relating to parked
domains, we built a supervised binary classifier to identify if an HTML source file was
related to a parked domain or not. To train our classifier, we used 20 features extracted
from HTML sources. These features included number of links in the source, number
of unique domains in the links, minimum, maximum and average link length, number
of external links, ratio of internal to external links, website directory presence, source
length, text to html ratio based on the number of characters, presence of Javascript
redirect and meta refresh redirection mechanisms, boolean value for if the meta domain
was external, number of frames and iframes and respective number of distinct frame and
iframe domains and boolean values to indicate if any of the iframe or frame domains
were external. We also counted the number of images present in the HTML source.
Intuition behind these features can be found in the work by Vissers et al. [44].
We trained the SVM model [31] using the 10-fold cross validation technique on

a set of 200 parking and 200 non-parking
feature vectors extracted from webpages
in our dataset. With a threshold of 0.5 we
were able to achieve a reasonable TPR of
99.5% and FPR of 1.5%. Table 1 shows
the confusion matrix using 10-fold cross
validation related to this experiment, where
NP denotes non-parking webpages and P

Predicted:
NP

Predicted:
P

Total

Actual: NP 197 3 200
Actual: P 1 199 200
Total 198 202
Table 1: Confusion matrix for the parking
classifier.

denotes parking webpages. In total, the classifier was able to identify≈10% (7510/75,085)
webpages as parking. These were discarded from further processing.

3.3 HCL: Hierarchical Clustering Module

To find clusters of related domain names associated with cross-channel abuse in a given
epoch (time period, t), we follow a hierarchical clustering process. This process can be
separated into three different levels. In the first level (NCL), we cluster together domain
names based on the network infrastructure properties. In the second level (PCL), first
level (NCL) clusters that satisfy a cardinality constraint (based on threshold λ) get
further clustered according to the DNS volumetric popularity of the domains within it.
In the third and final clustering step (ACL), second level (PCL) clusters that satisfy an
entropy (flux) constraint (based on threshold ε) get further separated based on the web
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content of each domain within it. This way, the entire process produces clusters of high
quality at different levels which are then labeled by the attribution module (Section 3.4).

In order to execute these three different clustering steps, we employ the most common
statistical features from the areas of DNS [25, 26, 27] and HTML [42] modeling. To
be clear, we do not claim novelty about the use of these features. Rather, our goal is
to show that already discussed features combined in this novel hierarchical clustering
method can provide an efficient and effective attribution system for SMS-spam abuse.
Next, we briefly discuss how we used these established statistical features in the context
of the three modules of our system.

Network-based Clustering (NCL): To compute network layer features in a given
time epoch t, for each domain d in the domain setD under consideration, we compute two
sets: (i) RHIP(d) which is a set of all IPs that have historically mapped to domain d, and
(ii) RHDN(IP) which is the set of domains that have historically been linked with the IP
in the RHIP set. This could also include domains that are not in D. Using the collection
of all domains D, the pDNS dataset and a specified epoch t, the network feature-based
clustering submodule generates a matrix Am×n where m= |D| represents the total
number of domains and n= |∪

i
RHIP (di)| represents the total number of IPs historically

associated with all domains inD during an epoch t. The matrixA is computed as follows,

Ai,j=

{
H(di)

|RHDN(ipj)| if ipj∈RHIP(di)
0 otherwise

(1)

where i ∈ {0,1, ... |D| − 1} and j ∈ {0,1, ... | ∪
i
RHIP(di)| − 1}. Also, H(d) =

−
∑
k∈C(d)pk∗log2(pk), where C(d) represents the unique set of characters in domain

name d and pk represents the probability of the occurrence of a given character in
the domain name. Thus, H(d) gives us the entropy of the name of domain d based
on relative character frequencies. The inclusion of the entropy factor in the numerator
increases the confidence of producing high quality clusters given the frequent use of
DGAs [28, 46] by adversaries.

Finally, we use Singular Value Decomposition (SVD) [45] to reduce the dimensionality
of the sparse matrix Am×n to Am×ñ where ñ <n. The network clustering module
then uses the X-Means clustering algorithm [40] to cluster domains having similar
network-level properties.

Popularity-based Clustering (PCL): Sometimes, network level properties may
be insufficient to distinguish between unrelated domains, leading to the formation of
large clusters. We will see this in Section 4.2. Popularity based clustering uses features
extracted from observing the popularity of domain names as measured by the number
of the successful DNS resolutions to it within the epoch t. This in turn gives us a lower
bound on the number of visits potentially made to the domain name via clicking on
a URL embedded in an SMS message. It is computed using the information gathered
in the passive DNS dataset. Let Lookup(d, dt) be a function that returns the number
of lookups (or in other words, successful DNS resolutions) for domain d on a given
date dt. And let C be the set of clusters produced by NCL. Using the pDNS data
collection and a specified epoch t, the popularity cluster submodule builds matrices
Bp×q(cr) ∀cr∈C s.t. |cr|≥λ, r∈{0,1,...|C|−1} where λ is a provided threshold and
|C| is the number of clusters produced by NCL. Here, p= |cr|, the number of domains
in a cluster from NCL and q are the total dates in a given epoch. The matrix B is
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computed as follows, Bi,j(cr)=Lookup(di,dtj) where di is a domain name and dtj is
a date in epoch t and cr is a NCL cluster. The intuition behind this matrix follows
from the work by Antonakakis et al. [26] which aims to measure the volumetric DNS
request patterns to domain names over time, within a NCL cluster (in our case).

Similar to the NCL module, each matrix is dimensionally reduced using SVD followed
by X-Means clustering algorithm to cluster domains having similar popularity levels.
Therefore, at the end of PCL, we have: (i) smaller clusters from NCL that had sufficient
network level information (|cr|<λ), and (ii) PCL (sub)-clusters from the larger NCL
clusters that required the additional popularity information for further refinement.

Application-based Clustering (ACL): To further refine and resolve any remaining
confusion between domain names after PCL, we proceed to a final clustering step that
aims to group together domain names with similar domain structure and web content.
To cluster similar domains based on their structure, we compute the standard deviation
σ of the entropy of domain names in a cluster produced after the PCL module. Let
T represent the set of domains in a PCL cluster and H(T) be the set of entropies
associated with domain names in T . If σ(H(T ))≥ε, i.e., the standard deviation in the
entropy of the domain names in the cluster is greater than the threshold ε, we apply
application based clustering to a PCL cluster. Again, the motivation behind using
entropy as a metric to assess the quality of clusters is similar to its purpose during NCL.

Once the clusters requiring application based clustering are identified, we use features
extracted from the full HTML source of the web pages associated with domains. Note
that there could be multiple and different sources of web pages associated with a
certain domain. We use the timestamp of the complaint associated with domains to
identify relevant HTML sources in a given epoch. Once we have the domains and their
corresponding HTML content, we compute TF-IDF statistical vector on the bag of words
on each cluster c [42]. Since the matrix is expected to be quite sparse, the application
cluster submodule performs dimensionality reduction using SVD. Once we have the
reduced application based feature vectors representing corresponding domains, this
module uses the X-Means clustering algorithm to cluster domains hosting similar content.

3.4 AM: Cluster Attribution Module

The cluster attribution module is used to label clusters with keywords that are representa-
tive of a campaign’s theme. To do this, we leverage the observation that a majority of the
domain names involved with cross-channel abuse, despite being auto-generated using do-
main generation algorithms (DGAs) [28, 46] , have certain keywords in the domain name
itself that are relevant to the theme of a campaign. In other words, the domain names are
not completely random. The aim is to lure the victim into visiting these domains via their
smartphones and a well designed domain name increases the odds of clicking the URL. For
example, domain names yourfastcashsystem[dot]com, 24hrpaysite[dot]com,
target.com.ctarg[dot]com, have keywords cash, pay and target respectively that
give us useful clues to what the domain might pertain to.

Using this observation, we use the Viterbi algorithm [33] to filter the domain names
in a given cluster to a sequence of words such as [your, fast, cash, system] in
the case of yourfastcashsystem[dot]com and [24, hr, pay, site] in the case of
24hrpaysite[dot]com. More formally, let C be a cluster produced after the entire
clustering process and let D be the set of domains in the cluster. For each domain
d∈D, we create a set U(d) that consists of all the parts of the domain name d except
the effective top level domain (eTLD) (e.g. U(‘abc.example.com’) = {abc, example}).
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Next, we compute the set of words W(U(d)) using the Viterbi algorithm. Therefore,
W(U(‘abc.example.com’)) = {example} since ‘abc’ is not a valid English word. Using
W, we increment the frequency counter for the word ‘example’ in a cluster specific
dictionary. In this manner, after iterating over all domains in the cluster, we get a
keyword to frequency mapping from which we pick the top most frequent word(s) to
attribute the cluster.

4 Results
In this section, we begin by describing the data collected and used in CHURN for
SMS-spam attribution. We then dive deeper into both CHURN’s clustering results and
the attribution accuracy of the system.

Epoch RRs (Domain,
IP) tuples

Domains
(FQDN)

IPs
(Hosts)

HTML
sources

Complaints

Jan - Dec 2011 17,291 6,159 10,537 16,492 30,973
Jan - Dec 2012 17,316 7,846 8,218 16,321 125,960
Jan - Dec 2013 18,374 7,682 8,793 15,553 2,504,836
Jan - Dec 2014 22,426 7,438 8,858 15,334 3,286,988
Jan - Aug 2015 10,165 5,067 5,627 3,875 2,371,417

Total: 56,940 17,528 23,037 67,575 8,320,174

Table 2: Summary of collected datasets.
4.1 Datasets

CHURN starts with an SMS-spam repository we developed from the sources mentioned
in Section 3. It had ≈8.32 million SMS-spam reports. The data collection module used
the domain names found in these reports to collect surrounding pDNS, HTML and
domain blacklist information using passive and active crawling methods. All these
datasets were continuously gathered over a period of four years and eight months, starting
in January 2011 and ending in August 2015, ensuring an overlapping time period.
The pDNS crawler was able to observe and record DNS Resource Records (RRs),

which gives us a temporal mark between a domain name and an IP address when
the SMS-spam was active. We collected 17,528 unique fully qualified domain names,
23,037 distinct IP addresses and 56,940 unique RRs related to the cross-channel abuse.
Regarding the HTML datasets around this SMS spam abuse, we were able to download
67,575 distinct pages with the corresponding HTML source code. We summarize all
this information across different epochs in Table 2.
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Fig. 3: Temporal characteristics of collected datasets.
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Temporal Characteristics of Cross-Channel SMS-Spam Figure 3(a) shows
the number of daily SMS complaint reports retrieved and analyzed by our system.
Although there are fluctuations in the number of daily complaints, the overall volume
of such complaints steadily increased over time. We suspect that the sudden surge in
the number of complaints received in early 2013 is due to both a proactive effort by
both FTC (and other regulatory parties) to encourage people to report such spam and
also an increase in the awareness among consumers of the available reporting tools. The
period between mid-2013 to mid-2015 shows a relatively steady volume of SMS-spam
reports with only marginal increase in the number of daily complaints. This signals
that the more dominant spam campaigns had stablized during this time period. In
addition, it is also possible that the number of consumers willing to report such spam
had reached a saturation point. Finally, Figure 3(b) shows the daily aggregated DNS
lookup volume to SMS-spam domains based on data collected from a large passive
DNS repository. We clearly see an uptake and a steady DNS lookup volume over time,
showing that the cross-channel SMS based abuse is a persisting phenomenon.

Lifetime of SMS-Spam Domains Figure 4
shows the empirical cumulative distribution func-
tion (eCDF) of the lifetime of all domains seen in
the campaigns. The lifetime of a domain is derived
by using the timestamp of the first and last seen
DNS resolution to a particular domain. We observe
that ≈30% of the domains had a lifetime of less
than 10 days, close to ≈30% of domains had a life-
time between 10 and 100 days and the remaining
≈40% had a lifetime between 100 and 480 days.
This indicates that cross-channel spam domains
are alive for much longer periods compared to tra-
ditional spam abuse, and even certain type of agile
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Fig. 4: The eCDF of the lifetime
of all domains showing long-lived
SMS-spam domains.

botnet abuse such as fast-flux networks [39]. To better study the evolution of SMS-spam
abuse, in the remainder of the paper we break and analyze the datasets into yearly epochs.

Reputation Properties of SMS-Spam Infrastructure Using domains from
public blacklists (PBL), namely ‘Malware Domains List’ [12], ‘sans’ [17], ‘Spamhaus
Blacklist’ [16], ‘itmate’ [10], ‘sagadc’ [13], ‘hphosts’ [7], ‘abuse.ch’ [1] and ‘Malc0de’
Database [11], we verify if and when an SMS-spam domain appeared in any of the
PBLs. These PBLs typically include phishing domains, botnet domains, malware sites
and other unsafe domains serving malicious content. Given that the cross-channel
domains are alive for a long time and the cross-channel spamming is relatively newer,
it was not clear whether the traditional blacklists are keeping pace with SMS-spam
domains. Indeed, our finding shows that SMS-spam abuse is practically unknown to the
PBLs. In total, we had only 177 out of the 17,528, a mere 1%, fully qualified domain
names (FQDNs) listed in PBLs. Out of this, 170 domains were listed in a single list
while seven domains were listed in two different lists. Moreover, when we checked all
the effective second level domain names (e2LD) against the same lists, we only found
15 out of 17,502 (a minuscule 0.08%) e2LDs listed in one or more of the lists — with
11 e2TLDs being listed in a single list while four eTLDs were listed in two different
lists. This provides clear evidence that traditional reputation feeds are failing to identify
the cross-channel domains even in a postmortem way.
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Diving a bit deeper in the blacklisted domains, we wanted to measure the timeliness
of the blacklist updates. To achieve this, we computed two metrics ∆1 and ∆2. For
a blacklisted SMS-spam domain d, ∆1(d) measures the difference in days between the
earliest date the SMS-spam domain was seen on a blacklist and the earliest date the
domain was seen in an SMS-spam message in our complaint repository. ∆2(d) measures
the difference in days between the earliest date the domain was seen in a blacklist and
the earliest date it was looked up, according to the passive DNS visibility we obtained.
Figure 5(a) shows the empirical cumulative distribution (eCDF) of ∆1 over all

blacklisted domains. We show two plots, one for the FQDNs and the other for the
e2LDs. A positive value for ∆1 means that the blacklisting happened after the earliest
complaint was received, whereas a negative value implies that the blacklisting happened
before the earliest complaint was received. From the eCDF of FQDNs, it is clear
that around 94% of the blacklisted FQDNs were blacklisted after the complaint was
received ranging from zero to 1,393 days. It is clear that the blacklists are rather slow
in incorporating the domains. In some cases, about 6% FQDNs were blacklisted even
before a complaint was received, indicating that sometimes either the SMS-spam is not
reported on time or existing abuse domains related to traditional spam are being reused
to cater to cross-channel spam. We observed a similar pattern in the case of e2LD.
Figure 5(b) shows the eCDF for ∆2 for FQDNs and e2LDs. A positive value for

∆2 means that the blacklisting happened after the earliest pDNS lookup as seen by
our sensors, whereas a negative value implies that the blacklisting happened before
the earliest pDNS lookup as seen in the pDNS database. In majority of the cases we
observed a huge lag in the timeliness of the blacklist update. The lag ranged from 13 to
1433 days in the case of FQDNs and from -78 to 1506 days (only one negative value was
seen) in the case of e2LDs. Although these findings are for a relatively small number of
domains (those that ever appeared in a blacklist), it is clear that the blacklists appear
to be lagging in discovering SMS-spam domains.

(a) eCDF of ∆1 (b) eCDF of ∆2

Fig. 5: Timeliness of blacklists

4.2 Clustering Results

Given a time period or an epoch and a set of domains, CHURN processes them in
the hierarchical way as described in Section 3.3. We discuss the clustering results at
various levels next.

Clustering Network & Application Level Information Figure 6(a) shows the
empirical cumulative distribution of the cardinality (size) of the clusters produced after
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Fig. 6: HCL Thresholds

the network based clustering (NCL) step. Most of the clusters at this level contain few
domains, but there exist some clusters that are quite large. We observed that up to 10%
of the clusters produced during network level clustering had a cardinality ≥25, with
one cluster being as large as almost half the number of domains under consideration.
For these large clusters we leverage the domain popularity information to further break
them down during the popularity based clustering (PCL) phase. By setting λ=25, we
were able to identify clusters to be processed by the popularity clustering submodule.

Once we have clusters from the NCL and PCL phases, the resulting clusters with
disparate domain names are further refined using application level clustering (ACL).
This is necessitated for some large clusters produced in the PCL module. Figure 6(b)
shows the eCDF of the standard deviation (σ) in entropy of domain names for all
clusters thus produced, differentiated based on epoch. Selecting as threshold ε=0.2,
we were able to mark up to 60% of the clusters for further processing by the ACL
module. Note that both the parameters λ (used in PCL) and ε (used in ACL) could
be set according to the operator’s needs. The application level clustering module gave
us fine-grained clusters of very good quality with the largest cluster consisting of 201
domains across all epochs. Figure 6(c) shows the eCDF from the distribution of final
cardinalities of all the clusters produced after all modules (NCL, PCL and ACL).

Cluster
Level

Domain-
(FQDN)

Label(s) EpochSample Domains

3 8 wire, deposit 2011 wire600.com, deposit1500.com
1 23 buy, best 2012 bestbuy.com.bexy.biz, bestbuy.com.bwty.biz
2 20 phone 2012 mobiletestandkeep.com, iphone5tryout.com
3 58 cash 2013 startcreatingcash.com, trackingyoursuccess.com
1 4 news 2014 cnbcnews29.com, cnbcnews34.com
3 129 loans, day, pay 2015 instanteasyloans.co.uk, checkonlinepaydayloans.com

Table 3: Representative sample of attributed clusters at various levels of the clustering
hierarchy. Apart from the above and the case studies, we discovered campaigns related
to selling drugs, adult content, free cruises, fake deals and many more.

AM Results The attribution module (AM) is used to label the clusters with keywords
based on the domain name patterns. For illustration, Table 3 shows a sample output
from this module. It can be seen that domains from certain campaigns can be attributed
immediately after the NCL module. Some, however, are attributed after the PCL
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module and others after the ACL module. This indicates that some campaigns can be
identified just by using network features, while others require a combination of network,
popularity and application features.

Evaluation To evaluate the output of CHURN and validate our results, we created
ground truth data by labeling domains with group labels. Each group label represents a
campaign. We made the judgement of assigning a specific group label to a domain based
on looking at the domain names and loading up their associated webpages in a browser.
Our experiment consisted of six group labels corresponding to the Bestbuy, Target,
Walmart, Financial Freedom, Payday and News campaigns depicted as Group 1-6 in that
order. We were able to label 653 (3.7%) domains in total to help us validate our results.

Group1 Group2 Group3 Group4 Group5 Group6 Total Parameter Setting

1. 3 77 65 14 277 205 12 650
λ=25 & ε=0.2

7 0 0 0 0 2 1 3

2. 3 76 57 14 257 192 12 609
λ=2 & ε=10−12

7 1 8 0 20 15 1 44

3. 3 67 54 10 208 155 10 504
λ=2 & ε=2

7 10 11 4 69 52 3 149

4. 3 64 35 8 188 125 7 427
λ=10000 & ε=N/A

7 13 30 6 89 82 6 226
Total 77 65 14 277 207 13 653

Table 4: CHURN evaluation based on ground truth with different system parameter
settings across all epochs.

Table 4 shows how the results from CHURN measured up against the labeled data.
System parameters λ and ε are varied to show the different cases. When λ is set to
a relatively large value (i.e., 10,000), the output from the HCL module of CHURN is
reduced to just the output of the NCL module since condition for PCL processing is never
satisfied. The fourth threshold configuration shows that 427 out of the 653 domains were
correctly attributed by CHURN using this setting. In the case when λ is set to a relatively
small value (i.e., 2) and ε is set to a relatively large value (i.e., 2), the output from the
HCL module of CHURN is reduced to output produced from applying the NCL and PCL
modules sequentially but skipping the ACL module altogether. The third configuration
shows that we attributed 504 out of 653 domains correctly using this setting.

Next is the case where λ and ε both are relatively small (i.e., 2 and 10−12 respectively).
Such a setting results in all the modules NCL, PCL and ACL being serially applied to
all clusters and domains without exception. This second configuration run shows that
the number of correctly attributed domains increases from 609 to 653 domains. Finally,
when λ and ε are set to 25 and 0.2 respectively, based on the justification presented
in Section 4.2, NCL, PCL and ACL are applied to domains and clusters depending
on the condition(s) being satisfied. This resulted in a marked improvement with 650
out of 653 domains being correctly attributed. The first configuration shows the results
using this setting.

5 Case Studies
After CHURN’s attribution module generates labels for clusters, these clusters and their
associated labels are used to identify and group domains that are part of the same scam
campaign. We present case studies for three of the most prominent campaigns that
are known SMS scams. As a general takeaway across all three case studies, we observed
that the domains supporting the scams were hosted in diverse but few IP locations
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and for a long period of time. While the distributed infrastructure ensures reliability,
the long term activity behind the domain names suggests the relative ineffectiveness
of defenses against these social engineering cross-channel attacks compared to similar
attacks via the internet channel.
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Fig. 7: Three Campaigns: Financial Freedom, Payday and Gift Card. For each we
show (7(a)–7(c)) daily lookup volumes according to our pDNS database, (7(d)–7(f))
eCDF of the lifetime of the domains seen and (7(g)–7(i)) 3D view of campaigns based
on time, popularity and network infrastructure (IPs binned by /24 prefix).

Financial Freedom: Upon landing on the Financial Freedom web page an embedded
video explains the purported benefits of enrolling into the program. The victim is
asked to provide her personal information for ‘Free Instant Access’ to the program.
The scam targeted consumers who are financially weak and looking for a solution to
credit card debt problems. In our dataset, this scam consisted of 277 FQDNs (e.g.
morefreedomforall[dot]com) and 187 IPs belonging to 49 distinct /24 subnetworks.
None of the domains in this scam were seen in domain blacklists and the domains
ended up being clustered in the ACL module. Figure 7(g) shows that the campaign
used dedicated infrastructure to operate in a stealthy mode thus surviving for a long
time, as can be seen in Figure 7(a), 7(d). Legal proceedings of a law suit initiated
against the perpetrators of this scam can be found here [4].
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Payday: Payday loan is a short term, high interest cash advance that has been banned
in many states in the United States, and the Federal Trade Commission (FTC) has
issued warnings regarding it [5]. For example, in one instance the defendants’ online
contract stated that a $300 loan would cost $390 to repay, but the defendants then
charged consumers $975 to repay the loan. This is a case of obscuring the ‘Terms of
service’ specified on the site, which make it hard for the victim to realize they are being
scammed. The scam works by sending a victim a SMS message with a URL. Upon
clicking the URL, the victim is asked to enter personal information, phone number,
and loan amount to proceed further.

A particular online payday loan campaign was clustered in our SMS spam dataset
consisting of 207 unique domains; hosted in 212 unique IP addresses; belonging to
142 distinct /24 subnetworks. 68 out of 207 such domains were part of the .co.uk
TLD. Eight domains in this scam were seen in PBL and they were mainly clustered
by the ACL module. Figure 7(b), 7(e) shows that despite the warnings by consumer
protection authorities (especially in the USA), this scam has survived and continues
to victimize consumers. In addition to this, Figure 7(h) shows the stability behind the
network infrastructure used to support the scam domains.

Giftcard: In this case study, the scam works by sending the victim a SMS message with a
URL and a code. Upon clicking the URL, the victim is asked to enter his/her personal de-
tails including phone number followed by entering the code in order to receive a fake free
gift card from the associated brand (e.g., Target, Bestbuy, Walmart etc.). Thereafter, vic-
tims were told to sign up for more than a dozen risky trial offers, none of which were free,
to qualify for the promised ‘free’ gift card. In many cases, the correct code confirmed to
the gift card scam operators that the mobile number is indeed active and they use this en-
try as a pretense to falsely subscribe the victim’s mobile number to premium rate services.

The giftcard campaign consisted of 207 domains and 215 IPs belonging to 85 distinct
/24 subnetworks. Four domains under this scam were seen in PBL and the domains
were mostly clustered in the NCL module. This campaign was mostly active during two
distinct time periods in 2012 and 2013, as can be seen in Figure 7(c). The resurgence
of the campaign the second time coincides with the shopping/holiday season between
November 2012 and January 2013 where a lucrative deal for a gift card is more likely
to catch the victim’s attention. Figure 7(f) shows that ≈45% of the domains had a
lifetime of less than 10 days, ≈45% were active between 10-100 days and the remaining
≈10% of the domains were relatively long lived. We found that out of 207 domains,
many of them were well crafted 4LDs (4th level domains), named after specific brands
such as BestBuy (114), Target (77) or Walmart (16) e.g. target.com.tthg[dot]biz.
We also noticed that the domains hosting these web pages have very similar layout,
structure and content. The majority of the Giftcard scam domains had a relatively
shorter lifetime and were more agile in using their network resources.

The FTC pressed charges against the perpetrators of the Gift Card campaign for
illegally sending ≈42.5 million text messages to consumers containing bogus offers
for ‘free’ Gift Cards. These charges were publicly reported to be settled in September
2013 [19]. This is reflected in Figure 7(c), where we see very few to no lookups during
the second half of 2013.
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6 Related Work

Although there has been work in both SMS spam detection [35, 38] and discovering SMS
spam campaigns [30], our focus on and characterization of the network infrastructure used
by SMS spam campaigns provides new insights that are not available from past research.
Jiang et al. [35] use the concept of ‘grey’ phone numbers, which are phone numbers
associated with data-only devices such as laptop data cards and electricity meters, as
honeypot end points to capture SMS-spam. They then apply statistical models on the
collected data to identify the source phone numbers generating spam. Murynets et al. [38]
conducted an empirical analysis of SMS-spam collected from fraudulent accounts in a
large cellular provider to uncover spamming sources and their strategies. Our work differs
from these works because of our focus on characterization of the network infrastructure
rather than source phone numbers of spam. Moreover, while their analysis is based on call
detail records (CDR’s) generated on the telephony channel, we explore the cross-channel
nature of such abuse by attributing the Internet infrastructure that facilitates SMS
abuse by using crowd-sourced complaint and passive DNS and application datasets.

Boggs et al. [30] propose a method to discover emergent malicious campaigns in cellular
networks by using graph clustering methods with mutual contact graphs that capture
interactions between nodes which represent phone numbers or domain names. In addition
to discovering SMS spam campaigns, we explore the properties of the infrastructure
that supports such campaigns using both passive DNS data and the application level
information available from webpages to which users are directed when they click on
URLs contained in SMS messages. Our results show that some of the assumptions made
in earlier work do not actually hold. For example, [30] assumes that Internet public
blacklists can be helpful in detecting and stopping malicious SMS messages but we show
that little overlap exists between domains in SMS messages and these public blacklists.

There have been numerous studies that cluster spam infrastructure and campaigns
based on URL [43], IP infrastructure [25, 29] and content [24, 32]. Although we do not
claim novelty around the individual features used in clustering SMS-spam infrastructure,
our contribution lies in observing that it is most effective to use features from different
layers of the network stack in a hierarchical manner so as to capture the diverse types of
SMS-spam campaigns. Prior work has shown the ineffectiveness of traditional blacklists
in protecting services such as instant messaging (IM) [41], and social media [34, 43].
Our demonstration of the poor blacklist coverage of SMS-spam domains is similar. The
significant gap in blacklist coverage and longevity of SMS-spam domains shows the
limits of using email and malware abuse intelligence to fight cross channel abuse. Lever
et al. [37] analyzed malicious cellular DNS traffic generated by mobile applications to
conclude that mobile app-level protection (eg. app-market security) suffices to curtail
mobile attacks. Our work shows that the emergent cross-channel abuse strategy bypasses
this and is a more serious threat to mobile users.

Key Differences: In summary, much of the past work in SMS abuse has focused on the
analysis of call detail records to identify spam source phone numbers rather than on the
characterization of the network infrastructure that facilitates the abuse. Such network
characterization has helped us demonstrate that current publicly available Internet
threat intelligence largely fails to identify this infrastructure to stop long-lived SMS spam
campaigns. Our work differs in both the long-term analysis of the problem, but also
the new methods we propose to cluster and attribute SMS spam messages over time.
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7 Limitations
Data collected and analyzed by CHURN, which includes consumer complaints and
passive DNS data, is primarily US-centric, making it difficult to generalize the findings
to other parts of the world. Indeed, cross-channel spam trends could be different in
Europe or Asia as compared to the US. However, our attribution system, CHURN
is designed to be easily deployable elsewhere, without much change. In future work, we
hope to be able to use CHURN with data from other countries and provide insights on
cross-channel abuse from around the world. CHURN’s evaluation is based on a limited
set of labeled data/ground truth. Although, we consciouly made an effort to label data
that is representative of all the spam domains under consideration, by randomizing the
selection process for manually inspecting the domains, we recognize the need to scale this
experiment and plan to do it in the future while adding more capabilities to our system.

8 Conclusion
In cross-channel abuse, SMS-spammers are able to exploit the ubiquity of mobile devices
and trust in the telephony channel to craft attacks that could be more successful than
spam on the Internet channel alone. Such illicit activities have become a serious problem,
with several reported scams that have lasted for several years. Using data from multiple
sources, we seek to attribute cross-channel abuse to the Internet infrastructure that
facilitates it. Our research results confirm that SMS-spam is not well defended against,
as such campaigns are able to run for long periods of time. Although there is some
agility in the network resources used by them, very few of the domains used, appear
on traditional domain blacklists.
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9 Appendix
9.1 Prominent Campaigns Snapshots

Figure 8 shows the snapshots of the three campaigns discussed in this paper.

(a) (b) (c)
Fig. 8: Three Campaigns: Financial Freedom, Payday and Gift Card. For each we
show (8(a)–8(c)) web pages rendered on a mobile browser.
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9.2 Hierarchical clustering module Dendogram

Figure 9 graphically depicts all the attributed clusters in our study at different levels for
epoch t2 (2012) as a radial dendogram plot. The center represents all the domains under
consideration and the concentric circles represent the cluster labels at each level starting
from NCL (level 1), to PCL (level 2) and ACL (level 3), as we move outward radially.

Fig. 9: A radial dendrogram plot illustrating the output from the hierarchical clustering
module for a single epoch.

References
[1] abuse.ch - the swiss security blog. https://www.abuse.ch/.
[2] Alexa Top Sites. http://www.alexa.com/topsites.
[3] Federal Trade Commission FTC Complaint Assistant. https://www.

ftccomplaintassistant.gov/#crnt&panel1-1.
[4] FTC on Financial Freedom. https://www.ftc.gov/enforcement/cases-

proceedings/092-3056/financial-freedom-processing-inc-formerly-known-
financial.



19

[5] FTC on Payday Lending. https://www.ftc.gov/news-events/media-
resources/consumer-finance/payday-lending.

[6] FTC Robocall Challenge. https://robocall.devpost.com/.
[7] hphosts. http://www.hosts-file.net/.
[8] Identifying parking ip infrastructure: Understanding malware evolution and the

implications on data modeling. https://www.damballa.com/identifying-parking-
ip-infrastructure-understanding-malware-evolution-and-the-implications-
on-data-modeling/.

[9] Internet archive: Wayback machine. https://archive.org/web/.
[10] I.T. Mate Product Support. http://support.it-mate.co.uk/.
[11] Malc0de database. http://malc0de.com/database/.
[12] Malware Domain List. http://www.malwaredomainlist.com/.
[13] sagadc summary. http://dns-bh.sagadc.org/.
[14] SMS Phishers Exploit Twilio and ow.ly to Steal Mobile Account Logins.

http://blog.cloudmark.com/2014/02/13/sms-phishers-exploit-twilio-and-
owly-to-steal-mobile-account-logins/.

[15] SMSWatchDog. http://www.smswatchdog.com.
[16] SPAMHaus Blocklist. https://www.spamhaus.org/lookup/.
[17] Suspicious domains - sans internet storm center. https://isc.sans.edu/suspicious_

domains.html.
[18] Technical realization of the Short Message Service (SMS), 3GPP TS 23.040, v13.0.0.

http://www.3gpp.org/dynareport/23040.htm.
[19] Text Spammers Settle FTC Charges They Illegally Sent Consumers Bogus Offers for ‘Free’

Gift Cards. https://www.ftc.gov/news-events/press-releases/2013/09/text-
spammers-settle-ftc-charges-they-illegally-sent-consumers.

[20] Tropo. https://www.tropo.com.
[21] Twilio. http://www.twilio.com.
[22] What kind of SMS messages are not allowed to be sent using Twilio?

https://www.twilio.com/help/faq/sms/what-kind-of-sms-messages-are-not-
allowed-to-be-sent-using-twilio.

[23] Your very own SMS Internet gateway with Arduino. http://x-ian.net/2012/10/
09/your-very-own-sms-internet-gateway-with-arduino/.

[24] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker. Spamscatter: Characterizing
internet scam hosting infrastructure. PhD thesis, University of California, San Diego, 2007.

[25] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building a dynamic
reputation system for DNS. In 19th USENIX Security Symposium, Washington, DC,
USA, August 11-13, 2010, Proceedings, pages 273–290. USENIX Association, 2010.

[26] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, and D. Dagon. Detecting malware
domains in the upper DNS hierarchy. In the Proceedings of 20th USENIX Security
Symposium (USENIX Security ’11), 2011.

[27] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and
D. Dagon. From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based Malware.
In the Proceedings of 21th USENIX Security Symposium (USENIX Security ’12), 2012.

[28] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and
D. Dagon. From throw-away traffic to bots: Detecting the rise of dga-based malware.
In Presented as part of the 21st USENIX Security Symposium (USENIX Security 12),
pages 491–506, Bellevue, WA, 2012. USENIX.

[29] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EXPOSURE: finding malicious
domains using passive DNS analysis. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2011, San Diego, California, USA, 6th February
- 9th February 2011. The Internet Society, 2011.

[30] N. Boggs, W. Wang, S. Mathur, B. Coskun, and C. Pincock. Discovery of emergent mali-
cious campaigns in cellular networks. In Proceedings of the 29th Annual Computer Security
Applications Conference, ACSAC ’13, pages 29–38, New York, NY, USA, 2013. ACM.



20

[31] C. J. Burges. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 2(2):121–167, 1998.

[32] M. F. Der, L. K. Saul, S. Savage, and G. M. Voelker. Knock it off: profiling the online
storefronts of counterfeit merchandise. In The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA
- August 24 - 27, 2014, pages 1759–1768, 2014.

[33] J. Forney, G.D. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278, March
1973.

[34] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: The underground on 140
characters or less. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, pages 27–37, New York, NY, USA, 2010. ACM.

[35] N. Jiang, Y. Jin, A. Skudlark, and Z.-L. Zhang. Greystar: Fast and accurate detection
of sms spam numbers in large cellular networks using grey phone space. In Proceedings
of the 22Nd USENIX Conference on Security, SEC’13, pages 1–16, Berkeley, CA, USA,
2013. USENIX Association.

[36] N. Jiang, Y. Jin, A. Skudlark, and Z.-L. Zhang. Understanding sms spam in a large
cellular network: Characteristics, strategies and defenses. In S. Stolfo, A. Stavrou, and
C. Wright, editors, Research in Attacks, Intrusions, and Defenses, volume 8145 of Lecture
Notes in Computer Science, pages 328–347. Springer Berlin Heidelberg, 2013.

[37] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and W. Lee. The core of the matter:
Analyzing malicious traffic in cellular carriers. In 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27,
2013. The Internet Society, 2013.

[38] I. Murynets and R. P. Jover. Crime scene investigation: SMS spam data analysis. In
J. W. Byers, J. Kurose, R. Mahajan, and A. C. Snoeren, editors, Proceedings of the
12th ACM SIGCOMM Conference on Internet Measurement, IMC ’12, Boston, MA,
USA, November 14-16, 2012, pages 441–452. ACM, 2012.

[39] J. Nazario and T. Holz. As the net churns: Fast-flux botnet observations. In 3rd
International Conference on Malicious and Unwanted Software, MALWARE 2008,
Alexandria, Virginia, USA, October 7-8, 2008, pages 24–31, 2008.

[40] D. Pelleg, A. W. Moore, et al. X-means: Extending k-means with efficient estimation
of the number of clusters. In ICML, pages 727–734, 2000.

[41] I. Polakis, T. Petsas, E. P. Markatos, and S. Antonatos. A systematic characterization
of IM threats using honeypots. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2010, San Diego, California, USA, 28th February - 3rd
March 2010, 2010.

[42] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
Inc., New York, NY, USA, 1986.

[43] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and evaluation of a real-time
URL spam filtering service. In 32nd IEEE Symposium on Security and Privacy, S&P 2011,
22-25 May 2011, Berkeley, California, USA, pages 447–462. IEEE Computer Society, 2011.

[44] T. Vissers, W. Joosen, and N. Nikiforakis. Parking sensors: Analyzing and detecting
parked domains. In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2014, 2015.

[45] M. E. Wall, A. Rechtsteiner, and L. M. Rocha. Singular value decomposition and
principal component analysis. In A practical approach to microarray data analysis, pages
91–109. Springer, 2003.

[46] S. Yadav, A. K. K. Reddy, A. Reddy, and S. Ranjan. Detecting algorithmically generated
malicious domain names. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pages 48–61. ACM, 2010.


